스마트 부품이 수집한 데이터를 AI로 분석하고 원격 감시 울산과학기술원(UNIST)은 인공지능(AI)으로 소형원전 위험 징후를 2초 안에 알아챌 수 있는 원격 감시 기술을 개발했다고 24일 밝혔다. 이를 통해 구조가 복잡한 소형 원전 내부를 실시간으로 확인할 수 있어 관리 비용을 줄이고 안전성을 높일 수 있을 것으로 기대된다. 이 기술은 기계공학과 정임두·김남훈 교수와 경상대학교 김형모 교수 공동연구팀이 개발했다. 광섬유 센서가 내장된 스마트 부품이 소형 원전 데이터를 수집해 보내면 AI가 이를 분석해 이상 상태를 경고하도록 만든 것이다. 핵심은 3D 프린팅을 통한 스마트 금속 부품 제작 기술과 광섬유의 연속적 다중 변수를 동시에 빠르게 처리하는 AI 기술이다. 연구팀은 직접에너지증착(Directed Energy Deposition·DED) 방식 3D 프린팅을 통해 스마트 원전 부품을 정밀하게 제작하고, 광섬유 센서를 원전 금속 부품 내부에 유연하게 내장했다. 이를 통해 가혹한 원자로 환경에서도 부품이 안정적으로 작동하게 했다. AI는 광섬유 센서 여러 위치의 열변형 정보가 포함된 다중 변수를 빠르게 실시간으로 복합 처리해 이상 징후를 즉각 감지하며, 이를
내달 DfAM 표준화 및 데이터 전처리 세미나 열려 3D 프린팅 소프트웨어 실습 과정도 진행...공정 데이터 이해↑ 차세대 3D 프린팅 설계 공정이라고 평가받는 적층제조특화설계(DfAM) 글로벌 표준화와 기술적 로드맵을 공개하는 행사가 내달 개막한다. DfAM은 기존 방식으로 설계·가공·제조가 까다롭고 정밀한 공정이 요구되는 제품군이나, 비교적 시간·비용 등 자원 소모가 큰 대상물에 적합한 적층 제조 설계 기술이다. 우주항공, 자동차, 반도체, 공조, 로봇, 조선 등 분야에 도입 사례를 확장하고 있다. 이번 세미나는 미국재료시험협회(ASTM) 국제적층제조우수성센터(AM CoE)가 주관하는 DfAM 표준·규격화에 대한 이해를 제고하기 위해 기획됐다. 여기에 3D 프린팅 설계를 위한 데이터 전주기에 대한 정보를 제공할 예정이다. 적층 제조 소프트웨어 솔루션 공급사 ‘더스퀘어’, 적층 제조 데이터 전처리 소프트웨어 공급사 ‘VoxelDance’, 3D프린팅연구조합, 울산과학기술원(UNIST) 등 3D 프린팅 업계 산학연이 협력해 3D 프린팅 기술 고도화에 대한 비전을 제안한다. 양일간 진행되는 이번 행사는 내달 8일 경기 수원 영통구 소재 경기도경제과학진흥원, 같
울산과학기술원(UNIST) 연구진이 부생가스를 활용해 고부가가치 화학물질인 알데하이드를 생산하는 기술을 개발했다. 안광진 에너지화학공학과 교수팀은 한정우 서울대 교수팀, 한국에너지기술연구원과 함께 성능이 뛰어난 로듐 기반 촉매를 개발했는데, 이 촉매는 부생가스에 포함된 올레핀을 고부가가치 알데하이드로 효율적으로 전환한다고 23일 밝혔다. 올레핀은 이중결합 구조를 가진 불포화 탄화수소 화합물로, 파라핀과 함께 화학산업에서 중요한 원료로 사용된다. 연구진은 이번 연구를 통해 부생가스를 재활용할 수 있는 새로운 방법도 제시했다. 부생가스는 합성가스를 액체로 전환하는 화학 반응에서 나오는 부산물로, 그동안 크게 주목받지 못했다. 연구진은 로듐 촉매의 성능을 높이기 위해 산화 세륨을 도입해 촉매의 화학적 성질을 개선했는데, 기존 기술과 견줄만한 높은 반응 성능을 가진 비균질계 촉매를 사용해 부생가스에 포함된 올레핀을 알데하이드라는 고부가가치 화학물질로 성공적으로 전환한 것이다. 이번에 개발한 로듐 촉매는 크기를 줄이고 분산성을 높여 재사용이 가능하면서도 성능이 크게 향상, 부생가스의 산업적 가치를 크게 높이게 될 것으로 평가받고 있다. 특히 고부가가치 화학물질 생산으
달리는 전기차에 무선으로 전력을 공급하는 기술을 울산과학기술원(UNIST) 연구진이 개발했다. UNIST는 전기전자공학과 변영재 교수팀은 이동 중인 전기차에 끊김이 없이 전력을 공급하는 '무선 전력 공급 트랙'을 고안했다고 16일 밝혔다. 일자 형태의 전자파 발생기에 전류를 흐르게 하면 근처에 원형의 자기장이 생긴다. 이 자기장이 고리 형태의 전력 수신기를 통과하면서 전력이 무선으로 전달되는 방식이다. 또 여러 개의 전선으로 전자파 발생기를 구성해 자기장의 범위가 넓어지면서, 전력 수신기가 전선의 수평 방향과 수직 방향으로 자유롭게 이동할 수 있다. 이 덕분에 전기차는 넓은 자기장이 형성한 전력 공급 트랙 위에서 앞뒤 좌우 유연하게 주행 가능하다. 연구팀은 전력 공급 트랙과 전력 수신기의 구조를 최적화하는 알고리즘도 개발했다. 특히 전기차 전력 전달 효율을 최대 90%까지 끌어올리는 데 성공했다. 기존 기술은 고가 자석인 강자성체를 사용해 효율을 높이려고 했지만, 높은 가격과 약한 내구성 문제로 실제 적용이 어려웠다. 이에 연구팀은 기술이 실생활에 적용될 수 있도록 전기전자공학자협회(IEEE)와 국제비전리복사보호위원회(ICNIRP) 표준 인증 등 인체 안전성
UNIST 연구팀, 한국 폭염 예측… 기후 변화 대응에 도움 한국 폭염 예측 중요한 역할 요소로 몽골 사막과 톈산산맥 적설 깊이 작용 UNIST 연구팀이 폭염 예측 AI 모델을 개발했다. ▲해수면 온도 ▲토양 수분 ▲적설 깊이 ▲해빙 농도 등 전 세계 기후 요소들을 분석한 결과, 몽골 사막과 중국 톈산산맥의 적설 깊이가 한국의 폭염일수 예측에 중요한 요소임을 확인했다. 지면과 해수면의 변동성이 대기와 상호작용해 멀리 떨어진 지역의 기상에 영향을 미치는 현상을 원격상관(Teleconnection)이라고 한다. 연구팀은 이 현상으로 폭염에 영향을 주는 특정 지역을 찾아내 예측 모델에 적용했다. 그 결과 겨울철 톈산산맥의 적설 깊이 증가와 봄철 고비사막의 적설 깊이 감소가 여름철 폭염을 예측하는 중요한 변수임을 입증했다. 몽골 사막과 톈산산맥 적설 깊이 변동성이 클 때 한국의 여름 기온이 상승하는 경향을 확인했다. 2023년 폭염 예측에서 톈산산맥 적설 깊이가 주요 역할을 했고, 2024년에는 토양 수분과 해수면 온도 등 기후 요소의 영향력이 더 복잡해지고 있다. 연구는 기상청, 한국연구재단, 해양수산부 지원으로 진행됐다. 연구 결과는 국제 학술지 npj Clim
카카오엔터프라이즈가 작년 9월 ‘코이카 플랫폼 ESG 이니셔티브' 업무 협약 이후 구체적인 사업계획을 바탕으로 수혜국의 주관기관인 ‘몽골과학기술대학교(이하 몽골과기대)’와 지난 7일 업무 협약을 체결했다. 코이카(KOICA, 한국국제협력단)의 ‘코이카 플랫폼 ESG 이니셔티브’는 ESG(환경·사회·지배구조)와 유엔 지속가능발전목표(SDGs)를 연계하는 새로운 민관 개발 협력사업 모델이다. 개발도상국의 경제·환경·사회 등의 발전을 위해 유기적 협력 및 효과적인 사업을 추진하고자 카카오엔터프라이즈는 지난 9월 코이카와 이를 위한 업무 협약을 체결했다. 이번 업무 협약을 맺은 몽골과기대는 몽골을 대표하는 공립 과학기술대학교로 1959년 개교했다. 10여 년 전부터 국내 서울대학교, UNIST(울산과학기술원), 서울과학기술대학교 등과 인재 양성 및 학술 교류 활동 등 한국과의 협력을 활발히 진행하고 있으며, 최근에는 코이카의 다양한 국제 지원사업의 수혜국 주관기관으로 참여하고 있다. 카카오엔터프라이즈와 몽골과기대는 이번 협약을 바탕으로 ▲클라우드 서비스 전문가 양성 교육 ▲엣지 클라우드 테스트베드 공동 개발 ▲몽골 클라우드 데이터센터 마스터플랜 수립 등을 진행한다.
낮은 온도에서 원자층 두께의 막을 균일하고 안정적으로 입힐 수 있는 공정 기술이 개발됐다. UNIST 반도체 소재·부품 대학원 및 신소재공학과 서준기 교수팀은 중국과학원 선전선진기술연구원 Feng Ding 교수, 세종대학교 김성규 교수, UNIST 정창욱 교수팀과 함께 유기금속화학기상증착법(Metal-organic chemical vapor deposition, MOCVD)을 활용해 200도의 저온에서 주석 셀라나이드계 소재별 맞춤형 공정법으로 얇은 막을 웨이퍼 단위의 대면적에 증착시킬 수 있는 박막 증착 공정법을 개발했다고 2일 밝혔다. 유기금속화학기살증착법은 화학반응에 참여하는 기체상의 전구체를 활용해 우수한 정밀성을 가지는 차세대 공정법이다. 반도체의 재료가 되는 웨이퍼 정도의 큰 면적에도 박막을 증착시킬 수 있다. 하지만 반응물을 합성시키기 위해선 650도 이상의 높은 온도로 리간드를 분해해야 했다. 연구팀은 전자소자, 광학소자, 열전소자 등 다양한 분야에서 연구 중인 2종의 주석 셀레나이드계 물질(SnSe2, SnSe)에 유기금속화학기상증착법을 적용했다. 2종의 주석 셀레나이드 박막 모두 웨이퍼 단위의 수 나노 수준 두께로 균일하게 증착시켰다. 연구
정성균 교수팀, 고체 전해질과 양극의 열 안정성 원리 규명 전고체 배터리를 더 안정적으로 활용할 수 있는 방법을 울산과학기술원(UNIST) 연구진이 밝혀냈다. 2일 UNIST에 따르면 에너지화학공학과 정성균 교수팀은 충전된 양극과 할라이드계 고체 전해질 사이의 열 안정성에 대한 연구를 통해 그 연관성을 규명했다. 현재 가장 많이 사용되고 있는 리튬이온전지는 화재와 폭발 위험성이 큰 유기 액체 전해질을 사용한다. 이런 위험성으로 인해 대체품으로 비연소성 무기 고체 전해질을 사용하는 전고체 배터리가 주목받았다. 무기 고체 전해질 중 하나인 황화물 고체 전해질은 차세대 전고체 배터리 개발 분야의 유망 소재로 연구되고 있으나, 고체 전해질과 전극 사이에 생기는 폭발성 분해 생성물로 열에 대한 안정성 문제가 제기됐다. 연구팀은 이러한 문제를 해결하고자 할라이드계 고체 전해질을 사용했다. 이 전해질은 황화물 고체 전해질에 비해 산화 안정성이 뛰어나 양극과 복합체를 이룰 때 주로 사용된다. 연구팀은 할라이드 고체 전해질 중 대표적으로 사용되는 LIC와 양극을 혼합한 복합체를 만들어 열 안정성 평가를 진행했다. 평가 결과 해당 복합체는 분해 반응이 시작되는 온도가 높아져
국내 연구진이 휴대용 전자기기 및 전기차 등의 리튬 이차전지 에너지 밀도를 높이고 고전압 구동 때도 안정성을 높여줄 용매를 개발했다. 한국과학기술원(KAIST)은 생명화학공학과 최남순 교수팀이 울산과학기술원(UNIST) 화학과 홍성유·서울대 화학생물공학부 이규태·고려대 화공생명공학과 곽상규·경상국립대 나노·신소재공학부 이태경 교수 연구팀과 함께 4.4V의 높은 충전 전압에서 리튬 금속 전지의 효율과 에너지를 유지하는 세계 최고 수준의 전해액 조성 기술을 개발했다고 19일 밝혔다. 연구팀은 구동할 수 있는 상한 전압 한계가 있는 용매들과 달리 높은 충전 전압에서 안정적으로 사용할 수 있는 새로운 용매를 합성하는 데 성공, 이를 첨가제 기술과 접목해 현저하게 향상된 가역 효율(상온 200회 99.9%)을 달성했다. 가역 효율은 사이클마다 전지의 방전용량을 충전용량으로 나눠 백분율로 나타낸 값으로, 가역 효율이 높을수록 사이클마다 배터리 용량 손실이 적은 것을 의미한다. 또 이 기술은 리튬 대비 4.4V 높은 충전 전압 조건에서 다른 전해액보다 약 5% 정도 높은 75.0%의 높은 방전용량 유지율을 보였다. 연구팀이 이번에 세계 최초로 합성 및 보고한 환형 설폰아
기존 방식에서 약 20% 성능 향상 “고효율 태양전지 향한 새로운 방향 제시” 국내 연구팀이 페로브스카이트 태양전지 성능을 한층 더 발전시킬 수 있는 기술을 개발했다. UNIST 에너지화학공학과 장성연 교수팀과 고려대학교 곽상규 교수팀이 주석-납 할로겐화물 페로브스카이트 광활성층과 양자점층을 접합해 태양전지 소자의 효율을 큰 폭으로 개선할 수 있는 기술을 공동으로 개발했다. 연구팀은 결합된 소재가 접합되며 만들어진 박막층을 활용해 전지의 효율을 대폭 상승시켰다. 생성된 접합층은 내부 전기장을 강화시키고, 경계면의 결함을 대폭 감소시켜 전하의 이동 거리를 늘렸다. 전하추출의 효율을 높인 것이다. 주석-납 할로겐화물 화합물은 밴드간의 에너지 갭의 차이가 적다. 에너지 갭은 반도체 소재에서 전도띠의 하단부분과 가전자띠의 상단부분의 에너지 차이를 의미한다. 근적외선 영역대 빛까지 흡수하는 능력이 뛰어나지만, 내부결함이 많고 전하의 이동 거리가 짧아 전하를 안정적으로 추출하기 어려웠다. 연구팀은 페로브스카이트 양자점을 주석-납 페로브스카이트 층 위에 박막으로 덮어 기존의 고질적 문제를 개선했다. 주석-납 할로겐화물 페로브스카이트 박막 표면에 양자점 소재를 씌우면 양자
강석주 연구팀, 수평원심주조 방식 도입…생산 속도도 13배↑ 배터리에 사용되는 고분자 고체전해질을 대량 생산할 수 있는 방법이 나왔다. UNIST 에너지화학공학과 강석주 교수팀은 수평원심주조 방식을 도입해 기존의 용해 주조 방식의 한계를 극복하는 기술을 개발했다고 밝혔다. 이를 통해 고분자 고체전해질의 생산량을 혁신적으로 늘릴 수 있다는 설명이다. 연구팀은 기존 철 파이프를 제조하는 수평원심주조 방식을 변형시켰다. 고분자 용액을 주입한 뒤 수평 방향으로 회전시켜 균일한 고분자 고체전해질을 만들었다. 기존 용해 주조 방식으로 균일한 모양의 고분자 고체전해질을 만들 수 없었던 것과는 상반된다. 수평원심주조 방식으로 제조한 고분자 고체전해질은 기존 방식으로 제작한 것에 비해 원재료 손실률이 거의 없다. 균일하게 제작 가능해 경제성과 효용성이 높을 뿐만 아니라 우수한 전기화학적 성능까지 보여줬다. 강석주 교수는 “기존 철 파이프를 제조할 때 사용하는 방식을 응용했다”며 “균일한 고성능 고체전해질을 대량생산까지 할 수 있는 방식”이라고 설명했다. 개발된 기술은 13배 빠른 속도로 고분자 고체전해질을 생산할 수 있다. 고분자 용액을 건조하고 진공열처리까지 하던 기존 방
구강희 교수팀 "스마트 도료·고분자 입자 분야 응용 가능" 나노 구조의 변화를 통해 실시간으로 색이나 모양을 나타낼 수 있는 기술을 울산과학기술원(UNIST) 연구진이 개발했다. 29일 UNIST에 따르면 에너지화학공학과 구강희 교수팀은 자연 현상을 모방해 블록공중합체를 이용한 광결정 구조를 큰 면적에서 자기조립화하는 기술을 만들었다. 블록공중합체는 두 개 이상의 다른 단량체가 블록 보양으로 공유결합한 형태를 말한다. 연구팀은 액체 방울 안에서 서로 섞이지 않는 액체와 블록공중합체를 활용해 상 분리(하나의 상을 형성하고 있는 물질계가 두 상으로 갈라지는 현상)를 촉진했다. 외부 조작 없이 자발적으로 조직화하는 블록공중합체의 자기조립을 통해 결함이 없는 수백 개의 광결정 구조를 만들어 냈다고 연구팀은 설명했다. 개발된 기술은 기존 방식과 달리 내부 나노 구조를 이용해 색을 만들어 내는데, 빛이 퇴색하지 않으면서 선명하고 지속 가능하다. 또 대면적으로 패턴화할 수 있어 디스플레이 기술에 적용할 수 있는 가능성도 크게 향상됐다. 이 기술은 외부 환경 변화에 따라 입자 내부에 형성되는 미세구조 크기를 바꿀 수 있는 고분자를 이용한다. 상태가 바뀌어도 본래대로 돌아갈
오는 20~27일 캐나다 밴쿠버서 열리는 AAAI 연례 정기학회서 공개 AAAI(Association for Advancement of AI)에서 UNIST의 연구성과 4건이 채택됐다. AAAI는 인공지능 분야 글로벌 권위 학회로, 이번에 채택된 연구성과는 20일(현지시각)부터 캐나다 밴쿠버에서 8일간 열리는 38회 연례 정기학회에서 공개된다. 알려진 데 따르면, 이번 정기학회에서는 사상 최대 규모인 1만 2천 편 이상의 논문이 전 세계에 제출됐으며, 이 중 약 23%인 2342편 만이 채택됐다. UNIST의 성과는 각각 심재영, 주경돈, 한승렬, 김지수 교수팀에서 나왔다. 심재영 교수팀은 가상 데이터를 인공지능 학습에 활용하는 컴퓨터 비전 기술을 개발했다. 인공지능이 CCTV 등 영상을 분석해 범죄자, 실종자 등 특정 인물을 자동으로 찾아내기 위해서는 방대한 영상 데이터 학습이 필요한데, 가상 데이터를 사용함으로써 데이터 라벨링 비용과 초상권 침해 문제를 획기적으로 줄일 수 있다. 가상현실, 게임 등을 더 생생하게 즐길 수 있는 인공지능 기술도 채택됐다. 주경돈 교수팀은 가상현실에서 사람 간의 3차원 상호작용을 정밀하게 만드는 인공지능 기술을 소개한다. 포
액화수소보다 밀도 2배 높은 수소 저장 효율 달성…Nature Chemistry 게재 미래 에너지원인 수소를 더 효율적으로 저장할 수 있는 가능성을 열어주는 연구가 나왔다. 수소를 고밀도로 저장해 수소 에너지 사용의 효율과 경제성을 높일 수 있을 것으로 기대된다. UNIST 화학과 오현철 교수가 보통의 대기압에서도 수소를 고밀도로 저장할 수 있는 나노다공성 수소화붕소마그네슘 구조(Mg(BH4)2)를 보고했다. 수소를 저장하거나 운송하는데 문제가 되는 낮은 수소 저장용량을 고밀도 흡착기술로 개선해 ‘대용량 수소 저장’이 가능하다는 설명이다. 오현철 교수는 “개발된 소재는 기존의 수소 저장 방법과 달리 많은 양의 수소를 안전하고 효율적으로 저장할 수 있는 잠재력을 가지고 있다”고 밝혔다. 미래 연료로 주목받고 있는 수소는 분자 간의 상호작용이 매우 약해 실제 사용을 위한 대용량 저장은 어려운 상황이다. 같은 부피에 압력을 700기압까지 크게 높여주거나 온도를 –253도까지 낮춰 대용량 저장이 가능하나 효율이 충분하지 않았다. 연구팀은 이미 수소를 함유한 고체 수소화붕소((BH4)2)와 금속 양이온 마그네슘(Mg+)으로 나노다공성 복합 수소화물인 수소화붕소마그네슘
"대면적 광전극 세계 최고 효율 달성…2030년 이전 상용화 기대" 그린수소 생산을 위해 크기를 1만배 키운 광전극 모듈을 울산과학기술원(UNIST) 연구진이 개발했다. 6일 UNIST에 따르면 에너지화학공학과 이재성, 장지욱, 석상일 교수와 탄소중립대학원 임한권 교수 공동 연구팀은 높은 효율과 내구성을 갖춘 대규모 그린수소 생산 기술을 개발했다. 연구팀은 특히 페로브스카이트 광전극 크기를 1만배 키워 실용 가능성을 높였다. 태양광 수소 기술은 태양에너지로 물을 분해해 수소를 얻는 이상적인 그린수소 생산 기술이다. 연구팀은 해당 기술의 실용화를 위해서는 실험실 소형 장치에서 크기를 키우는 '스케일업'(scale-up)이 필요하다고 보고, 광전극 소재로 효율이 높고 비교적 값이 싼 페로브스카이트를 채택했다. 그러나 페로브스카이트 태양전지는 태양광에 포함된 자외선과 공기 중 수분에 대한 안정성이 떨어진다는 단점이 있었다. 이에 연구팀은 페로브스카이트의 양이온으로 기존 메틸암모늄 대신 포름아미디늄을 사용해 자외선에도 안정적인 페로브스카이트를 제조했다. 또 물과의 접촉면을 니켈 포일로 완전히 봉인해 물속에서도 안정성을 유지하도록 만들었다. 일반적으로 연구개발용 광전