프레스 금형에는 여러 가지 공법이 있는데, 그 중에 프로그레시브 공법이 있다. 일반적이고 보편적인 프로그레시브 금형은 우리나라 기술이 세계적으로 인정받고 있으며, 수출도 많이 하고 있다. 그러나 형상을 가진 프로그레시브 금형은 구조, 이송, 취출에 있어 일반적인 방법이 아니다. 일부 회사에서 형상 프로그레시브 금형을 제작하고는 있지만, 아직 공개된 기술은 없다. 이 글에서는 이처럼 공개되지 않은 형상 제품의 프로그레시브 금형을 다루고자 하며, 특히 동사에서 필자가 직접 설계하여 현장에서 성공적으로 생산한 기술에 대해 소개한다. 지난 회에 이어서 성형제품 프로그레시브 금형의 구조 기술에 대해 소개하기로 한다. 이번 회에는 플레이트 리프터를 적용한 성형 파트의 구조 기술에 대해 설명한다. 플레이트 리프터 부품 적용 기술과 레이아웃 도면, 전체 구조 도면은 지난 회에서 이미 소개했으므로 여기서는 생략하기로 한다. 구조도 그림 1의 SECTION F-F 1차 포밍, SECTION G-G 2차 포밍, SECTION H-H 3차 포밍 성형 파트에 대해 단면도 및 상세도와 함께 소개한다. ▲ 그림 1. 플레이트 리프터를 적용한 성형 파트의 구조도 성형 프로그레시브 금형에
[헬로티] 프레스 금형에는 여러 가지 공법이 있는데, 그 중에 프로그레시브 공법이 있다. 일반적이고 보편적인 프로그레시브 금형은 우리나라 기술이 세계적으로 인정받고 있으며, 수출도 많이 하고 있다. 그러나 형상을 가진 프로그레시브 금형은 구조, 이송, 취출에 있어 일반적인 방법이 아니다. 일부 회사에서 형상 프로그레시브 금형을 제작하고는 있지만, 아직 공개된 기술은 없다. 이 글에서는 이처럼 공개되지 않은 형상 제품의 프로그레시브 금형을 다루고자 하며, 특히 필자가 직접 설계하여 현장에서 성공적으로 생산한 기술에 대해 소개한다. 지난 회에 이어서 성형제품 프로그레시브 금형의 구조 기술에 대해 소개하기로 한다. 이번 회에는 플레이트 리프터를 적용한 성형 파트의 구조 기술에 대해 설명한다. 플레이트 리프터 부품 적용 기술과 레이아웃 도면, 전체 구조 도면은 지난 회에서 이미 소개했으므로 여기서는 생략하기로 한다. 구조도 그림 1의 SECTION F-F 1차 포밍, SECTION G-G 2차 포밍, SECTION H-H 3차 포밍 성형 파트에 대해 단면도 및 상세도와 함께 소개한다. ▲ 그림 1. 플레이트 리프터를 적용한 성형 파트의 구조도 성형 프로그레시브 금형
프레스 금형에는 여러 가지 공법이 있는데, 그 중에 프로그레시브 공법이 있다. 일반적이고 보편적인 프로그레시브 금형은 우리나라 기술이 세계적으로 인정받고 있으며, 수출도 많이 하고 있다. 그러나 형상을 가진 프로그레시브 금형은 구조, 이송, 취출에 있어 일반적인 방법이 아니다. 일부 회사에서 형상 프로그레시브 금형을 제작하고는 있지만, 아직 공개된 기술은 없다. 이 글에서는 이처럼 공개되지 않은 형상 제품의 프로그레시브 금형을 다루고자 하며, 특히 동사에서 필자가 직접 설계하여 현장에서 성공적으로 생산한 기술에 대해 소개한다. ⓒGetty images Bank 이번 회부터는 성형 제품 프로그레시브 금형의 구조 기술에 대해 소개하고자 한다. 지난 회에 소개했던 프로그레시브 금형 상향 성형 공법이나 상향 드로잉 공법들을 실제 현장에서 사용하려면 금형 구조가 뒷받침돼야 한다. 지금까지는 한정된 지면 관계 상 공법 위주로 설명했으나, 이번 회부터는 그 공법들이 완성되는 금형 구조를 설명한다. 금형 구조는 ①생산성, ②내구성, ③유지 보수, ④제조 원가 등을 고려하여 설계해야 한다. 금형설계자가 고려해야 할 부분은 Σ
프레스 금형에는 여러 가지 공법이 있는데, 그 중에 프로그레시브 공법이 있다. 일반적이고 보편적인 프로그레시브 금형은 우리나라 기술이 세계적으로 인정받고 있으며, 수출도 많이 하고 있다. 그러나 형상을 가진 프로그레시브 금형은 구조, 이송, 취출에 있어 일반적인 방법이 아니다. 일부 회사에서 형상 프로그레시브 금형을 제작하고는 있지만, 아직 공개된 기술은 없다. 이 글에서는 이처럼 공개되지 않은 형상 제품의 프로그레시브 금형을 다루고자 하며, 특히 동사에서 필자가 직접 설계하여 현장에서 성공적으로 생산한 기술에 대해 소개한다. 이번 회에는 프로그레시브 금형에서 제품 높이가 비교적 높은 상향 드로잉 구조의 사례를 두 가지 소개하고자 한다. 문헌이나 기술서적에서 많이 소개되는 드로잉 레이아웃이지만 실제로 금형은 흔하지 않으며, 제대로된 구조가 표현된 기술서적은 구하기 어렵다. 실제로 상향 드로잉 공법으로 금형 언밸런스를 제거하여 생산에 적용하고 있는 업체는 몇 안 되는 것으로 알고 있다. 프로그레시브 드로잉에서는 드로잉 성형이 어렵다기보다는 구조 기술이 어렵다. 상향 드로잉에 있어서 스트립 언밸런스가 제거되지 못하는 형상이 있는데, 이것에 대한 스트립 적용 방법
프레스 금형에는 여러 가지 공법이 있는데, 그 중에 프로그레시브 공법이 있다. 일반적이고 보편적인 프로그레시브 금형은 우리나라 기술이 세계적으로 인정받고 있으며, 수출도 많이 하고 있다. 그러나 형상을 가진 프로그레시브 금형은 구조, 이송, 취출에 있어 일반적인 방법이 아니다. 일부 회사에서 형상 프로그레시브 금형을 제작하고는 있지만, 아직 공개된 기술은 없다. 이 글에서는 이처럼 공개되지 않은 형상 제품의 프로그레시브 금형을 다루고자 하며, 특히 동사에서 필자가 직접 설계하여 현장에서 성공적으로 생산한 기술에 대해 소개한다. 이번에는 프로그레시브 금형에서 상향 성형을 적용한 구조 사례 및 적용 방법을 소개하려고 한다. 구조적으로는 많이 적용하는 방법이 아니므로 이해하기 어려울 수도 있지만, 금형 설계자로서 이 방법을 알아두면 금형의 생산성 및 안정성을 향상시킬 수 있을 것이다. 아래 그림 1은 소재 폭 318mm, 피치 130mm, 소재 두께 SPFH540 2.0T의 프로그레시브 다이의 레이아웃이다. 이 도면은 최근인 2년 전에 국내 자동차 1차 벤더에 납품한 도면이다. 제품 크기는 판두께 2.0T의 238×140×74mm 사이즈를 가
프레스 금형에는 여러 가지 공법이 있는데, 그 중에 프로그레시브 공법이 있다. 일반적이고 보편적인 프로그레시브 금형은 우리나라 기술이 세계적으로 인정받고 있으며, 수출도 많이 하고 있다. 그러나 형상을 가진 프로그레시브 금형은 구조, 이송, 취출에 있어 일반적인 방법이 아니다. 일부 회사에서 형상 프로그레시브 금형을 제작하고는 있지만, 아직 공개된 기술은 없다. 이 글에서는 이처럼 공개되지 않은 형상 제품의 프로그레시브 금형을 다루고자 하며, 특히 동사에서 필자가 직접 설계하여 현장에서 성공적으로 생산한 기술에 대해 소개한다. 이번에는 프로그레시브 금형에서 상향 성형을 적용한 구조 사례 및 적용 방법을 소개하려고 한다. 구조적으로는 많이 적용하는 방법이 아니므로 이해하기 어려울 수도 있지만, 금형 설계자로서 이 방법을 알아두면 금형의 생산성 및 안정성을 향상시킬 수 있을 것이다. 아래 그림 1은 소재 폭 318mm, 피치 130mm, 소재 두께 SPFH540 2.0T의 프로그레시브 다이의 레이아웃이다. 이 도면은 최근인 2년 전에 국내 자동차 1차 벤더에 납품한 도면이다. 제품 크기는 판두께 2.0T의 238×140×74mm 사이즈를 가
프레스 금형에는 여러 가지 공법이 있는데, 그 중에 프로그레시브 공법이 있다. 일반적이고 보편적인 프로그레시브 금형은 우리나라 기술이 세계적으로 인정받고 있으며, 수출도 많이 하고 있다. 그러나 형상을 가진 프로그레시브 금형은 구조, 이송, 취출에 있어 일반적인 방법이 아니다. 일부 회사에서 형상 프로그레시브 금형을 제작하고는 있지만, 아직 공개된 기술은 없다. 이 글에서는 이처럼 공개되지 않은 형상 제품의 프로그레시브 금형을 다루고자 하며, 특히 동사에서 필자가 직접 설계하여 현장에서 성공적으로 생산한 기술에 대해 소개한다. 지난 회에서 말했듯이 프로그레시브 금형에서는 상향으로 성형하게 되면 구조면에서 복잡해지므로 가급적이면 상향 포밍을 피하는 것이 좋다. 이번에는 상향 성형을 피하는 대표적인 몇 가지 방법에 대해서 소개한다. 이들 방법을 알아두면 자동차 성형품뿐만 아니라 일반적인 유사한 제품들에도 적용할 수 있어 유용하다. 그림 1은 소재 폭 441mm, 피치 160mm, 소재 두께 SPCC 1.2T의 프로그레시브 다이의 레이아웃도이다. 그림 1. 레이아웃도 이 도면은 수년전 일본 가와사끼중공업으로부터 의뢰를 받아 동사에서 납품한 도면이다. 금형 사이즈가
프레스 금형에는 여러 가지 공법이 있는데, 그 중에 프로그레시브 공법이 있다. 일반적이고 보편적인 프로그레시브 금형은 우리나라 기술이 세계적으로 인정받고 있으며, 수출도 많이 하고 있다. 그러나 형상을 가진 프로그레시브 금형은 구조, 이송, 취출에 있어 일반적인 방법이 아니다. 일부 회사에서 형상 프로그레시브 금형을 제작하고는 있지만, 아직 공개된 기술은 없다. 이 글에서는 이처럼 공개되지 않은 형상 제품의 프로그레시브 금형을 다루고자 하며, 특히 동사에서 필자가 직접 설계하여 현장에서 성공적으로 생산한 기술에 대해 소개한다. 지난 회에서 말했듯이 프로그레시브 금형에서는 상향으로 성형하게 되면 구조면에서 복잡해지므로 가급적이면 상향 포밍을 피하는 것이 좋다. 이번에는 상향 성형을 피하는 대표적인 몇 가지 방법에 대해서 소개한다. 이들 방법을 알아두면 자동차 성형품뿐만 아니라 일반적인 유사한 제품들에도 적용할 수 있어 유용하다. 그림 1은 소재 폭 441mm, 피치 160mm, 소재 두께 SPCC 1.2T의 프로그레시브 다이의 레이아웃도이다. 그림 1. 레이아웃도 이 도면은 수년전 일본 가와사끼중공업으로부터 의뢰를 받아 동사에서 납품한 도면이다. 금형 사이즈가
프레스 금형에는 여러 가지 공법이 있는데, 그 중에 프로그레시브 공법이 있다. 일반적이고 보편적인 프로그레시브 금형은 우리나라 기술이 세계적으로 인정받고 있으며, 수출도 많이 하고 있다. 그러나 형상을 가진 프로그레시브 금형은 구조, 이송, 취출에 있어 일반적인 방법이 아니다. 일부 회사에서 형상 프로그레시브 금형을 제작하고는 있지만, 아직 공개된 기술은 없다. 이 글에서는 이처럼 공개되지 않은 형상 제품의 프로그레시브 금형을 다루고자 하며, 특히 동사에서 필자가 직접 설계하여 현장에서 성공적으로 생산한 기술에 대해 소개한다. ⓒGetty images Bank 프로그레시브 금형에서는 상향으로 성형하게 되면 구조면에서 복잡해진다. 따라서 가급적이면 상향 포밍을 피하는 것이 좋지만, 제품의 모양에 따라서는 상향 포밍을 꼭 해야 할 때가 있다. 그 때와 상향 성형을 피하는 방법에 대해 설명하기로 한다. 상향 성형을 피하는 한가지 방법으로서 그림 1의 레이아웃을 보면 제품 형상이 다이면보다 올라오게 된다. 그림 1. 프로그레시브 금형의 레이아웃도 1차 벤딩(SECTION A-A)을 하향으로 선행하고, 2차 포밍(SECTION B-B)으로 작업하면 다이면보다 형상은
프레스 금형에는 여러 가지 공법이 있는데, 그 중에 프로그레시브 공법이 있다. 일반적이고 보편적인 프로그레시브 금형은 우리나라 기술이 세계적으로 인정받고 있으며, 수출도 많이 하고 있다. 그러나 형상을 가진 프로그레시브 금형은 구조, 이송, 취출에 있어 일반적인 방법이 아니다. 일부 회사에서 형상 프로그레시브 금형을 제작하고는 있지만, 아직 공개된 기술은 없다. 이 글에서는 이처럼 공개되지 않은 형상 제품의 프로그레시브 금형을 다루고자 하며, 특히 동사에서 필자가 직접 설계하여 현장에서 성공적으로 생산한 기술에 대해 소개한다. 프로그레시브 금형에서는 상향으로 성형하게 되면 구조면에서 복잡해진다. 따라서 가급적이면 상향 포밍을 피하는 것이 좋지만, 제품의 모양에 따라서는 상향 포밍을 꼭 해야 할 때가 있다. 그 때와 상향 성형을 피하는 방법에 대해 설명하기로 한다. 상향 성형을 피하는 한가지 방법으로서 그림 1의 레이아웃을 보면 제품 형상이 다이면보다 올라오게 된다. 그림 1. 프로그레시브 금형의 레이아웃도 1차 벤딩(SECTION A-A)을 하향으로 선행하고, 2차 포밍(SECTION B-B)으로 작업하면 다이면보다 형상은 돌출하지만, 1차 벤딩(SECTIO