IoT, 센서, AI(Artificial Intelligence) 기술로 빌딩은 점점 더 스마트해지고 있다(그림 1). 이러한 기술들이 모여 새로운 가능성을 열면서 사용자들은 더 간편한 삶을 누릴 수 있다. 빌딩의 접근성, 유연성, 사용자 친화성에 대한 수요가 높아짐에 따라 케이블이나 무선을 사용한 센서/엑추에이터 네트워크(Sensor/Actuator Networks)가 더 중요해지고 있으며, 이는 빌딩의 에너지 효율과 IT 보안을 위해서도 중요하다. KNX 칩셋 기술 KNX는 수년간 빌딩의 통신 및 자동화를 위한 국제표준으로 자리잡았다. 이 표준의 기원은 1990년 초 EIB(European Installation Bus)라는 명칭의 표준에서 찾을 수 있다. 여기에 BATIBUS(프랑스)와 EHSA(네덜란드)와 같은 다른 표준들이 더해져 2006년 KNX 협회가 탄생했다. KNX는 분산형 버스 시스템으로서, 각기 다른 수많은 공급사 및 제조사의 모든 KNX 인증 제품은 상호적으로 네트워크에 연결하고 구성할 수 있다(그림 2). 엔지니어링 툴 소프트웨어(ETS)를 사용하면 모든 KNX 네트워크에서 설계, 구성, 진단을 할 수 있다. 물리적 수준에서 가장 많이
가장 널리 사용되고 있는 무선 기술인 블루투스의 최신 버전은 처리량 및 도달 거리가 크게 향상됨으로써 홈 자동화 애플리케이션에서도 경쟁력을 확보할 수 있을 것으로 기대되고 있다. 블루투스(Bluetooth®)는 초기부터 긴 여정을 거쳐 발전해 왔다. 1999년에 발표된 이 기술의 1.0 버전은 데이터 대역폭이 1Mbps였으며, GFSK(Gaussian Frequency Shift Keying) 변조방식 만을 지원할 수 있었고, AFH(Adaptive Frequency Hopping) 확산 스펙트럼은 갖추고 있지 않아 상호 운용성을 준수하는데 어려움을 겪었다. 뒤이어 출시된 버전들에서는 대역폭, 범위, 보안, 향상된 간섭 내성 등을 보완하여 이러한 취약점을 해결했다. 예를 들어, 2009년에 발표된 블루투스 3.0 + HS는 최대 3Mbps의 블루투스 대역폭을 제공하며, 802.11 채널과 함께 사용하여 최대 24Mbps까지 속도를 높일 수 있었다. 2010년에 채택된 블루투스 4.0은 블루투스 저에너지를 핵심 요소로 도입했다. 이 버전의 코어 사양은 블루투스 저에너지 칩과 기존 버전의 BR(Basic Rate)/EDR (Enhanced Data Rat
[헬로티] 실리콘랩스(지사장 백운달)는 홈 오토메이션 시장을 위해 가정에서의 생활을 보다 안전하고 편리하며 에너지 효율적으로 만들기 위한 사물인터넷(IoT) 연결 기기 솔루션을 제공하는 새로운 무선 동체 감지 센서 및 스마트 아웃렛 레퍼런스 디자인 2종을 출시했다. FCC 및 UL 사전 인증을 획득한 이들 레퍼런스 디자인은 실리콘랩스의 지그비 ‘골든 유닛(Golden Unit)’ 홈 오토메이션(HA 1.2) 소프트웨어 스택과 멀티프로토콜 무선 게코(Wireless Gecko) SoC 포트폴리오를 기반으로 하고 있으며, 미래지향적인 커넥티드 홈 제품을 만드는데 필요한 모든 하드웨어와 펌웨어, 그리고 소프트웨어 툴을 포함하고 있다. 실리콘랩스에 따르면, 이들 신제품은 홈 오토메이션 기기 제조사와 개발자가 지그비 메시 네트워크 기술을 이용해 제품 출시 기간을 단축하고 시스템 비용과 복잡성을 줄일 수 있게 해준다. 개발자들은 새로운 이들 턴키 레퍼런스 디자인을 이용해 사전 인증된 무선 기술과 오픈소스 하드웨어 설계 파일, 업계 표준 소프트웨어 스택을 통해 설계 콘셉트부터 최종 제품까지 신속하게 앞서 나갈 수 있으며, 검증된 테스트 설정 및 제
[헬로티] 실리콘랩스(Silicon Labs, 지사장 백운달)는 지난 30일 사물인터넷(IoT) 시장을 겨냥한 멀티밴드, 멀티프로토콜 무선 SoC(system-on-chip) 디바이스를 전격 공개했다. 새로운 멀티밴드 와이어리스 게코(Wireless Gecko) SoC 제품들을 이용, 개발자들은 동일한 멀티프로토콜 제품을 2.4 GHz 대역과 복수의 서브기가헤르츠(sub-GHz) 대역에서 동작하도록 설계할 수 있어, 커넥티드 기기 설계의 간소화, 비용 및 복잡도 감소, 시장출시시점 단축을 실현할 수 있다는 것이 회사측의 설명이다. 실리콘랩스는 멀티밴드 와이어리스 게코 SoC 제품들은 빌딩 및 홈 오토메이션, 스마트 미터링, 보안, 건강 및 피트니스 모니터링 기기, 커넥티드 조명, 전자가격표시기(ESL: electronic shelf label), 물류 추적 등의 애플리케이션에서 IoT 연결을 위한 제품에 적합하다고 덧붙였다. 실리콘랩스에 따르면, 멀티밴드 와이어리스 게코 SoC는 단거리 접속을 위한 2.4GHz 대역에서의 표준기반 및 독자적인 프로토콜 뿐 만 아니라 더 넓은 무선 통달범위를 위해 서브기가헤르츠에서의 독자 프로토콜을 지원할 수 있도록 설계됐다
ⓒGetty images Bank 사물인터넷은 우리 주변의 주택부터 차량 내 커뮤니케이션에 이르기까지 실제 세계와의 소통 방식을 변화시키는 중이다. 새로운 범주의 기기와 애플리케이션을 유발하는 이런 진화의 중심에는 CMOS 이미지 센서 기반의 카메라가 있다. 이 글에서는 홈 자동화 IoT 기기에 가장 적합한 CMOS 이미지 센서를 선택할 때 고려해야 할 핵심적인 특성을 고찰한다. 사물인터넷(IoT)은 우리의 일상생활 대부분을 바꿀 정도로 급속히 진화하고 있다. 이런 진화의 중심에는 센서 기술이 있다. 대부분의 IoT 애플리케이션은 여러 개의 센서를 내장한 상태이며 그 중 상당수는 이미지 센서를 포함한다. 예를 들어, 오늘날 가장 인기를 끌고 있는 홈 오토메이션 제품 및 시스템들은 CMOS 이미지 센서 기반의 카메라를 배치한다. 정교한 컴퓨터 비전 알고리즘을 접목한 이 카메라는 조만간 스마트 홈의 ‘두뇌’가 될 것으로 보인다. 이 글에서는 홈 자동화 IoT 기기에 가장 적합한 CMOS 이미지 센서를 선택할 때 고려해야 할 핵심적인 특성을 고찰한다. CMOS 이미지 센서 핵심 특성 … 화각 화각(FOV, Field of View
사물인터넷은 우리 주변의 주택부터 차량 내 커뮤니케이션에 이르기까지 실제 세계와의 소통 방식을 변화시키는 중이다. 새로운 범주의 기기와 애플리케이션을 유발하는 이런 진화의 중심에는 CMOS 이미지 센서 기반의 카메라가 있다. 이 글에서는 홈 자동화 IoT 기기에 가장 적합한 CMOS 이미지 센서를 선택할 때 고려해야 할 핵심적인 특성을 고찰한다. 사물인터넷(IoT)은 우리의 일상생활 대부분을 바꿀 정도로 급속히 진화하고 있다. 이런 진화의 중심에는 센서 기술이 있다. 대부분의 IoT 애플리케이션은 여러 개의 센서를 내장한 상태이며 그 중 상당수는 이미지 센서를 포함한다. 예를 들어, 오늘날 가장 인기를 끌고 있는 홈 오토메이션 제품 및 시스템들은 CMOS 이미지 센서 기반의 카메라를 배치한다. 정교한 컴퓨터 비전 알고리즘을 접목한 이 카메라는 조만간 스마트 홈의 ‘두뇌’가 될 것으로 보인다. 이 글에서는 홈 자동화 IoT 기기에 가장 적합한 CMOS 이미지 센서를 선택할 때 고려해야 할 핵심적인 특성을 고찰한다. CMOS 이미지 센서 핵심 특성 … 화각 화각(FOV, Field of View)은 특정 위치와 방향으로 카메라를
사물인터넷은 우리 주변의 주택부터 차량 내 커뮤니케이션에 이르기까지 실제 세계와의 소통 방식을 변화시키는 중이다. 새로운 범주의 기기와 애플리케이션을 유발하는 이런 진화의 중심에는 CMOS 이미지 센서 기반의 카메라가 있다. 이 글에서는 홈 자동화 IoT 기기에 가장 적합한 CMOS 이미지 센서를 선택할 때 고려해야 할 핵심적인 특성을 고찰한다. 사물인터넷(IoT)은 우리의 일상생활 대부분을 바꿀 정도로 급속히 진화하고 있다. 이런 진화의 중심에는 센서 기술이 있다. 대부분의 IoT 애플리케이션은 여러 개의 센서를 내장한 상태이며 그 중 상당수는 이미지 센서를 포함한다. 예를 들어, 오늘날 가장 인기를 끌고 있는 홈 오토메이션 제품 및 시스템들은 CMOS 이미지 센서 기반의 카메라를 배치한다. 정교한 컴퓨터 비전 알고리즘을 접목한 이 카메라는 조만간 스마트 홈의 ‘두뇌’가 될 것으로 보인다. 이 글에서는 홈 자동화 IoT 기기에 가장 적합한 CMOS 이미지 센서를 선택할 때 고려해야 할 핵심적인 특성을 고찰한다. CMOS 이미지 센서 핵심 특성 … 화각 화각(FOV, Field of View)은 특정 위치와 방향으로 카메라를
ⓒGetty images Bank 사물인터넷은 우리 주변의 주택부터 차량 내 커뮤니케이션에 이르기까지 실제 세계와의 소통 방식을 변화시키는 중이다. 새로운 범주의 기기와 애플리케이션을 유발하는 이런 진화의 중심에는 CMOS 이미지 센서 기반의 카메라가 있다. 이 글에서는 홈 자동화 IoT 기기에 가장 적합한 CMOS 이미지 센서를 선택할 때 고려해야 할 핵심적인 특성을 고찰한다. 사물인터넷(IoT)은 우리의 일상생활 대부분을 바꿀 정도로 급속히 진화하고 있다. 이런 진화의 중심에는 센서 기술이 있다. 대부분의 IoT 애플리케이션은 여러 개의 센서를 내장한 상태이며 그 중 상당수는 이미지 센서를 포함한다. 예를 들어, 오늘날 가장 인기를 끌고 있는 홈 오토메이션 제품 및 시스템들은 CMOS 이미지 센서 기반의 카메라를 배치한다. 정교한 컴퓨터 비전 알고리즘을 접목한 이 카메라는 조만간 스마트 홈의 ‘두뇌’가 될 것으로 보인다. 이 글에서는 홈 자동화 IoT 기기에 가장 적합한 CMOS 이미지 센서를 선택할 때 고려해야 할 핵심적인 특성을 고찰한다. CMOS 이미지 센서 핵심 특성 … 화각 화각(FOV, Field of View