UNIST 최문기 교수팀, 고해상도 스트레쳐블 디스플레이 패터닝 기술 개발 피부처럼 늘어나는 고해상도 디스플레이 제작 기술이 개발됐다. 자체 신축성을 가지고 소리와 빛을 동시에 발생시켜 차세대 디스플레이로써 웨어러블 기기나 모바일, 사물인터넷(IoT) 등에서 유용할 전망이다. UNIST 신소재공학과의 최문기 교수팀은 ‘스탬프의 표면제어로 스트레쳐블 발광층의 고해상도 패터닝 기술’을 개발했다. 이 기술로 만든 스트레쳐블 발광 소자는 신축성을 지니는 동시에 빛과 소리를 발생시킨다. 최문기 교수는 “차세대 디스플레이 수요가 증가하고 있으나, 기존에 사용됐던 발광 소자는 패터닝 공정을 적용하기 힘들어 ‘표면 에너지 제어를 통한 발광층 전사 기술’을 개발했다”고 전했다. 연구진은 개발한 기술을 바탕으로 시각 및 청각을 이용해 방화벽을 해제할 수 있는 ‘시·청각 이중 암호화 소자’도 선보였다. 패터닝은 기판에 원하는 회로나 모양을 가공하는 행위다. 연구진이 개발한 기술은 패터닝된 발광층을 전극 위로 복사해 패턴을 얻는다. 기존의 기법을 테이프처럼 뗐다 붙였다 할 수 있는 점탄성 스탬프 위에서 진행한다. 필름이 안정적으로 부착돼 작은 크기의 패턴도 왜곡 없이 얻을 수 있
차세대 QLED 디스플레이, 증강현실, 센서 등 다양한 산업 적용 기대 디스플레이 패널에 쓰이는 차세대 발광소재로 양자점(Quantum dot)이 각광을 받고 있다. 특히 카드뮴이나 납과 같은 유독성 물질을 포함하지 않는 친환경 인듐 포스파이드(InP) 양자점이 주목을 받고 있으나 현재 기술로는 초고해상도 구현이 어려워 양자점 LED(QLED) 디스플레이 및 안경형 증강현실/가상현실 기기 적용에 있어 한계를 지닌다. KAIST는 신소재공학과 조힘찬 교수 연구팀이 친환경 InP 양자점의 우수한 광학적 특성을 유지하며 초고해상도 패턴을 제작하는 신기술을 개발했다고 26일 밝혔다. 현재 국제 유해물질 제한지침(RoHS, Restriction of Hazardous Substances) 규정을 만족하지 못하는 제품은 많은 나라에서 판매가 금지되므로, 최근 많은 디스플레이 기업은 환경친화적인 특성을 갖춘 InP 양자점을 디스플레이에서의 빛 방출 소재로 채택, TV 등 중대형 디스플레이에 적용하기 시작했다. 그러나 InP 양자점은 외부 환경에 매우 민감한 성질을 가지고 있어 픽셀을 만드는 패터닝 공정 적용시 소재의 광학적 특성이 크게 저하되는 단점이 있어 우수한 광학적
국내 연구진이 값싼 친환경 소재인 프러시안계 물질을 사용한 고체 전해질을 개발했다. 고체 전해질의 비싼 가격과 환경 문제 등을 동시에 해결해 전고체 배터리 상용화를 앞당길 수 있을지에 귀추가 주목된다. UNIST 에너지화학공학과 이현욱, 정성균 교수팀과 KAIST 서동화 교수팀은 상온에서도 구동하는 전고체 나트륨 이차전지를 개발했다. 친환경 물질인 프러시안계 물질(Prussian Blue analogues, PBAs)을 고체 전해질로 사용했다. 프러시안계 물질은 18세기부터 사용된 청색 염료 물질 중 하나로 청바지의 염료로 사용된다. 친환경 물질인 PBAs는 나트륨 이차전지의 핵심소재인 양극활물질(양극재)로 흔히 쓰인다. 이온이 이동할 수 있는 넓은 이온 전도 채널을 가지며 쉽게 합성 가능하다. 구조적으로 안정하고 값 또한 싸다. 이런 장점과 더불어 전이 금속에 따라 그 특성까지 달라져 많은 주목을 받고있다. 연구팀은 PBAs의 고유 특성이 이온 전도도를 높일 수 있다고 판단했다. 전이 금속의 종류를 변경하면서 이온 전도의 변화 추이를 관찰했다. 이를 통해 전이 금속의 크기에 따라 이온 채널의 크기가 달라지는 것을 확인했다. 큰 이온 채널을 가진 물질은 높은
보안이 갖는 가치와 중요성 IoT가 널리 확산되면서 향후 10년간 수십 억 개의 클라우드 커넥티드 제품이 설계, 생산, 판매될 것으로 전망된다. 하지만 쉽게 해킹을 당할 수 있는 제품을 원하는 사람은 없을 것이다. 그러므로 보안의 중요성이 어느 때보다 커지고 있다. 우수한 코드 품질을 갖추는 것은 보안성을 확보한 제품을 만드는 데에 있어 필수 불가결하며, 이를 실현하기 위해서는 개발 과정의 일환으로 코드 분석 도구를 사용하는 것이 반드시 필요하다. 소스 코드는 제품의 품질을 좌우하는 요소라고 할 수 있다. 제품의 개발, 제조, 업데이트 전반에 걸쳐 보안을 확보하기 위해서는 먼저 구상 단계에서부터 보안성을 확보할 필요가 있다. 모든 기업은 투자한 자산을 보호받고 싶어하며, 이것은 소프트웨어 설계 및 엔지니어링 과정에 투입되는 모든 노력을 포함한다. 결국, 수 개월, 수 년에 걸쳐 제품을 개발하기 위해 기울인 노력이 물거품이 되게 하고 싶지는 않을 것이다. 여기서는 기업과 그 가치의 핵심에 대해 이야기해보겠다. 관계 법령 및 실무 규정 여러 정부 공공기관에서도 오늘날 IoT 기기의 보안이 취약한 경우 발생할 수 있는 위협에 대한 인식이 확산되고 있다. 과거 Io
KAIST는 전기및전자공학부 윤영규 교수 연구팀이 기존 기술 대비 10배 이상 정밀하게 생체 형광 신호 측정을 가능하게 하는 인공지능(AI) 영상 분석 기술을 개발했다고 20일 밝혔다. 연구팀은 별도의 학습 데이터 없이, 낮은 신호대잡음비를 가지는 형광현미경 영상으로부터 데이터의 통계적 분포를 스스로 학습해 영상의 신호대잡음비를 10배 이상 높여 생체신호를 정밀 측정할 수 있는 기술을 개발했다. 이를 활용하면 각종 생체 신호의 측정 정밀도가 크게 향상될 수 있어 생명과학 연구 전반과 뇌 질환 치료제 개발에 폭넓게 활용될 수 있을 것으로 기대된다. 윤 교수는 "이 기술이 다양한 뇌과학, 생명과학 연구에 도움이 되길 바라는 마음을 담아 '서포트(SUPPORT, Statistically Unbiased Prediction utilizing sPatiOtempoRal information in imaging daTa)'라는 이름을 붙였다"며 "다양한 형광 이미징 장비를 활용하는 연구자들이 별도의 학습 데이터 없이도 쉽게 활용가능한 기술로, 새로운 생명현상 규명에 폭넓게 활용될 수 있을 것"이라고 말했다. 공동 제1 저자인 엄민호 연구원은 "서포트(SUPPORT) 기
전기자동차에서 볼 수 있는 고용량 배터리에 사용되고 있는 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 갖고 있으나, 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 배터리 수명에 악영향을 미치고 있다. 이를 해결하기 위해 단일벽 탄소나노튜브를 소량 첨가해 수명 특성이 향상되는 결과를 얻었는데, 이런 향상이 어떻게 가능한지 나노스케일에서 영상화한 연구 결과가 공개됐다. KAIST는 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해 배터리의 수명 특성 향상 메커니즘 영상화 결과를 국제학술지 '에이씨에스 에너지 레터스'에 게재했다고 19일 밝혔다. 연구팀은 이전에는 실리콘 활물질이 충·방전을 거치면서 전자 전도 네트워크가 열화되는 과정을 영상화했는데, 이번 연구에서는 단일벽 탄소나노튜브의 존재로 인해서 그 형태를 유지하고 있는 전자전도 네트워크가 활물질 내에 균일한 충·방전이 가능하도록 기능하고 있음을 보여 수명 증대 메커니즘을 검증했다. 구체적으로 연구팀은 원자간력 현미경(Atomic Force Microscopy) 기반의 켈빈 프루브 현미경(Kelvin Probe Force Microscopy)를 이
센서시스템연구센터-뇌융합기술연구단 융합 연구 사람이 눈으로 본 색을 뇌에서 다르게 구분하듯, 수용된 빛을 파장별로 구분해 반응하는 인공신경회로 플랫폼이 국내 연구진에 의해 개발됐다. 이 인공신경회로는 인공망막을 개발할 때 동물시험 이전에 사전 검증 용도로 사용될 수 있어 관련 기술 개발에 도움이 될 것으로 전망된다. 한국과학기술연구원(KIST)은 센서시스템연구센터 김재헌 박사, 송현석 박사팀과 뇌융합기술연구단 김홍남 박사팀이 생체 외 세포실험을 통해 인간과 같은 수준의 시각 기능을 갖는 인공 광수용체를 제작하고, 이 광수용체에서 빛을 받아 생산된 전기적 신호를 다른 신경세포로 전달하는 인공 시각회로 플랫폼을 개발했다고 17일 밝혔다. KIST에 따르면 연구진은 우선 명암을 구분하는 로돕신과 색 구분을 위한 청색 옵신 단백질을 발현해 각각 청색과 녹색에서 선택적인 반응성을 가지는 스페로이드 세포군집을 제작했다. 신경세포의 기능성과 생존력을 높인 이 스페로이드는 사람의 눈이 인식하는 색과 동일한 파장에서 반응을 일으켰다. 그 후 눈을 모사한 광반응성 신경 스페로이드와 뇌를 모사한 일반 신경 스페로이드를 연결한 디바이스를 제작하고 일반 스페로이드까지 신경전달이 확
모션 캡처는 실제 인물이나 물체의 움직임을 디지털적으로 기록하는 기술이다. 기록된 정보는 스포츠 성능 평가, 엔터테인먼트용 기기로서 캐릭터의 인간다운 움직임 재현 또는 바이오메카닉스 연구 용도 등의 생물 움직임 계측 등에 이용된다. 최근의 동향에서는 VR/AR 등의 고정도 트래킹 시스템으로서 주로 로케이션 VR 시설을 중심으로 용도를 확대하고 있다. 모션 캡처 기술에는 광학식, 관성 센서식, 자기식, 기계식 등이 있으며, 각각 특징이 있는데 이 글에서는 방식 중에서 가장 고정도이고 응용성이 높은 광학식 모션 캡처 기술을 바탕으로 한 응용 기술에 대해 다루기로 한다. 광학식 모션 캡처는 마커라고 불리는 반사체를 인체나 대상 물체 등의 대상에 부착하고, 그 마커를 그림 1로 대표되는 여러 대의 카메라로 삼각 측량을 해서 위치 측위를 하는 원리이다. 카메라에서 조사되는 적외선 스트로보를 마커가 반사하고, 반사된 적외광을 카메라로 촬상해 화상 처리 및 3차원화 계산 알고리즘에 의해 마커의 위치 좌표를 실시간으로 기록하는 기술이다. 필자 등은 오랫동안 그 계측 원리를 바탕으로 보다 고정도의 3차원 트래킹 시스템으로서 이용할 수 있도록 시스템을 개선해 왔다. 그 결과…
컴퓨터에 의해 인간의 지능을 실현하려는 AI(인공지능) 연구는 1956년 다트머스 회의(Dartmouth Conference)에서 시작됐다고 한다. 그 후, 인간의 지능 중 중요한 부분을 차지하는 시각 기능을 컴퓨터로 실현하기 위한 연구 분야가 ‘컴퓨터 비전(CV)’으로 불리며 AI 연구 분야에서 파생된 것이 1980년경이다. CV 분야의 세계 최고봉 회의의 하나인 CVPR이 1983년에 시작되어 당초 100건 정도였던 발표 논문 수는 그 후 약 20년 동안에 5배인 500건 정도로 늘었으며, 더욱이 그 후 10년 동안에는 심층학습 등 AI 연구의 진화에 따른 연구자 대량 증가에 의해 4배인 2,000건을 넘을 정도까지 증가했다. 아직 증가세는 멈추지 않고 있다. CV는 카메라의 각 화소에 수광되는 빛 세기의 2차원 배열에 지나지 않는 디지털 화상으로부터 피사체의 크기․형태․색깔․재질 등의 물리량 계측이나, 이름․의미․감정․의도 등과 같은 피사체의 의미나 상태의 이해․인식을 컴퓨터에 의해 실현하는 것이 목적인 기술 분야이다. 예를 들어 피사체의 길이(형상)를 계측하기 위해서는 그것을 화상의 화소수로 구하고, 그것이 실제 공간에서는 몇 미터에 해당하는지를 카메
4차 산업혁명과 스마트 팩토리 최근 몇 년간 4차 산업혁명이 화두가 되고 있다. 18세기에 일어난 1차 산업혁명은 기계에 의한 동력의 혁명, 19세기 말 ~ 20세기 초에 일어난 2차 산업혁명은 전기에 의한 자동화의 혁명, 20세기 후반에 일어난 3차 산업혁명은 컴퓨터에 의한 디지털 혁명이었다. 앞서 1, 2, 3차 산업혁명은 시간이 지난 이후에 산업혁명이라는 이름을 얻게 되었다. 이와는 다르게 4차 산업혁명은 현재 진행 중인 상태에 있으면서도 산업혁명이라는 이름을 얻은 초유의 산업혁명이라 할 수 있다. 4차 산업혁명은 정보통신기술(Information Communication Technology, ICT)에 의한 초연결(Hyper Connectivity) 혁명이라고 일컬어지고 있다. 이러한 4차 산업혁명이 주목을 받기 시작한 계기는 2011년에 독일이 주도한 Industrie 4.0 정책이라고 할 수 있다. 이는 독일의 앞선 제조업 기술과 새로운 IT 기술을 결합하여 제조업의 발전을 도모하자는 것이었다. 4차 산업혁명은 ①사물인터넷(Internet of Things, IoT), ②빅데이터(Big Data), ③인공지능(Artificial Intelligen
UNIST 조재필 특훈교수팀, ‘Nature Energy’ 리뷰 논문 게재 실리콘 입자의 크기 조절로 부피팽창 및 수명 저하 문제 해결 국내 연구팀이 상용화된 전지에 적용 가능한 실리콘 음극재를 평가할 수 있는 분석 프로토콜을 제시했다. UNIST 에너지화학공학과 조재필 특훈교수팀은 ‘Nature Energy’에 리뷰 논문을 싣고, 이차전지 소재로 가장 주목받는 실리콘 음극 물질들이 상용화 전지에 사용되기 위해 확보해야 할 특성 및 문제점을 심도있게 분석했다. 실리콘 음극재는 충·방전 시 흑연 대비 5배 이상의 부피 팽창과 수축으로 인해 부서짐 현상이 발생한다. 이로 인해 전해액과의 분해 반응이 가속화되고 표면 막이 두껍게 형성돼 리튬이온의 이동을 저해함으로써 수명 저하를 일으킨다. 전기자동차의 배터리 음극에서 사용중인 실리콘 소재는 마이크론(100만분의 1)크기의 입자인 SiOx 계통으로 5% 미만 함유돼 있지만, 사용되는 소재의 초기효율이 80%대에 전도도까지 낮아 고속 충전에 문제가 있다. 연구팀은 개발 중인 실리콘 소재들은 초기 효율이 86%이하로 94%인 흑연에 비해 낮아 양극의 사용 효율을 감소시킨다는 문제점을 지적했다. 실리콘 소재는 입자가 커질
권순용·이종훈 교수팀, 4인치 대면적 소자 합성 기술 활용 2차원 물질 기반 고성능 p형 반도체 소자 제작 기술을 울산과학기술원(UNIST) 연구진이 개발했다. 24일 UNIST에 따르면 반도체 소재·부품 대학원 및 신소재공학과 권순용 교수팀과 이종훈 교수팀은 몰리브덴 텔루륨화 화합물반도체를 이용한 고성능 p형 반도체 소자를 제작하는 데 성공했다. 연구팀은 이번 기술이 차세대 상보형 금속산화 반도체(CMOS) 산업에 활용할 수 있을 것으로 보고 있다. 차세대 반도체로 주목받고 있는 2차원 물질은 두께가 매우 얇아 공정 시 구조가 쉽게 파괴된다. 특히 일반적인 3차원 금속전극을 형성할 때 계면에서 다양한 결함이 발생하는 문제점이 있다. 이를 해결하기 위한 다양한 연구가 진행되고 있지만 대부분 n형 반도체에 집중돼왔다. 연구팀은 반대로 p형 반도체 중 몰리브덴 텔루륨화 화합물반도체를 활용했다. 화학적 반응으로 박막을 만드는 화학기상증착법을 통해 4인치의 큰 면적에서 소자를 합성하는 기술을 고안했다. 연구팀은 이 기술을 기반으로 2차원 반금속에 3차원 금속을 증착했을 때 일함수가 조절되는 점을 이용해 고성능 p형 트랜지스터를 제작했다. 제1저자 장소라 석·박통합과
미국의 컨설팅 기업 ADL은 4차 산업혁명 속 새로운 물리적 이송 기술로 무인 항공기(UAV)를 꼽았다. UAV는 현대 사회에 군사, 통신, 인프라, 농업 등 다양한 분야에서 기술적 발전을 통해 활발하게 사용되고 있다. UAV에서 렌즈는 데이터 수집 및 분석의 핵심 역할을 한다. 고성능 UAV에 걸맞은 렌즈 시스템 설계는 무엇보다 중요하다. 이를 위한 정밀한 광학 시스템 설계는 필수다. UAV의 광학 시스템 설계 기술의 발전과 함께 머신비전은 더욱 새로운 분야에 활용되고 있다. 하지만 새로운 분야에 머신비전 기술을 접목하기 위해선 전통적인 머신비전 기술보다 더욱 고도화된 요구 사항을 요구한다. 새로운 영역에서 애플리케이션으로 작업할 때 이미징 시스템이 압력, 온도, 충격 및 진동 측면에서 다양한 환경 조건에 적응해야 하기 때문이다. 기존의 전통적인 머신비전 응용 프로그램으로는 해결할 수 없었던 문제를 해결하는 UAV 이미징 애플리케이션은 급속히 증가하고 있다. 드론 기술의 발전으로 인해 이미징 기술도 일관된 영상 성능을 제공하기 위해 발전해야 할 필요성이 커지고 있기 때문이다. UAV가 비행하는 높은 고도의 환경에서는 렌즈의 성능이 무엇보다 중요하다. 이번…
일반카메라에 비해 홀로그래픽 카메라는 물체의 3D 정보를 획득하는 능력 덕분에 현실감 있는 영상을 제공한다. 하지만 기존 홀로그래픽 카메라 기술은 광파(光波)의 간섭 현상을 이용해 빛의 파장·굴절률 등을 측정하는 장치인 간섭계를 사용해 복잡하고 주변 환경에 민감한 단점이 있다. KAIST는 물리학과 박용근 교수 연구팀이 3차원 홀로그래피 이미징 센서 기술의 새로운 도약을 이뤘다고 23일 발표했다. 연구팀은 복잡한 간섭계를 사용하지 않는 혁신적인 홀로그래피 카메라 기술을 발표했다. 이 기술은 마스크를 이용해 빛의 위상 정보를 정밀하게 측정하며, 이에 따라 물체의 3D 정보를 더욱 정확하게 재구성할 수 있다. 연구팀은 제시한 혁신적인 방법은 수학적으로 특정 조건을 만족하는 마스크를 일반 카메라에 추가하고, 이를 통해 측정한 레이저 산란광을 컴퓨터 상에서 분석하는 방식이다. 복잡한 간섭계가 필요하지 않고, 더욱 단순화된 광학 시스템을 통해 빛의 위상 정보를 효과적으로 획득한다. 이 기술에서는 물체 뒤 위치한 두 렌즈 사이의 특별한 마스크가 중요한 역할을 한다. 이 마스크는 빛의 특정 부분을 선별적으로 필터링하며, 렌즈를 통과하는 빛의 강도는 일반적인 상업용 카메라
한국과학기술원(KAIST) 신소재공학과 조은애 교수·포항공대(POSTECH) 화학공학과 한정우 교수 공동 연구팀은 수소차 연료 전지에 사용되는 촉매인 백금을 대체할 비귀금속 촉매를 개발했다고 22일 밝혔다. 수소차에 사용되는 '양이온 교환막 연료전지(PEMFC)'는 전기화학 반응 속도를 높이기 위해 전극에 많은 양의 백금 촉매를 사용한다. 연구팀은 백금을 대체할 수 있는 공기극용 '단일 원자 철·질소·탄소·인 소재'를 개발하고, 활성 메커니즘을 규명했다. 이 소재는 탄소에 미량의 철 원소가 원자 단위로 분산돼 있고, 그 주변을 질소와 인이 결합하는 구조라고 연구팀은 설명했다. 이 소재를 촉매로 이용하면 현재 상용 제품에 적용되고 있는 PEMFC뿐만 아니라 차세대 연료전지인 '음이온 교환막 연료전지(AEMFC)'에도 적용할 수 있다. 귀금속인 백금보다 1000분의 1 이상 저렴해 가격 경쟁력을 확보할 수 있다고 연구팀은 덧붙였다. 조은애 교수는 "연료전지는 복잡한 반응 장치라서 새로운 촉매가 개발되더라도 실제 연료전지에 적용하기는 어려운 경우가 많은데 이번에 개발한 촉매는 양이온 교환막 연료전지와 음이온 교환막 연료전지에 적용해 모두 성능을 높이는 데 성공했다