스포트라이트 [AW 2026 프리뷰-주목 솔루션①] AI 성능보다 중요한 건 ‘결론 도달 시간’, 제조 AX의 승부처가 바뀐다
제조 현장에서 AI가 체감으로 이어지지 않는 이유는 ‘인공지능(AI) 성능이 약해서’가 아니라 ‘현장이 결론에 도달하는 속도가 느려서’라는 말이 나온다. 공정이 아무리 빨라도 문제가 생겼을 때 범위를 좁히고 원인을 가설화하고 재발 방지까지 결정하는 흐름이 느리면 비용은 커진다. 컨포트랩은 이러한 문제의 해법을 제조 AX 관점에서 제시한다. 핵심은 AI 도입 여부가 아니라, 기록·추적·보고가 자동화돼 의사결정까지 걸리는 시간을 얼마나 줄이느냐다. 노코드 기반 제조 운영 관리 솔루션 ‘포타(POTa)’는 현장 데이터를 구조화된 기록으로 연결하고, 품질·생산·설비 예지보전까지 하나의 흐름으로 묶는다. 이를 통해 제조 현장은 숙련자 의존에서 벗어나, 데이터 기반으로 빠르게 판단하고 계획정지를 설계하는 운영 체계로 전환하고 있다. 제조 AX의 승부처는 ‘정확도’보다 ‘결론까지 도달하는 시간’ 최근 현장에서 발생하는 모든 비용은 불량률 그래프 하나로 설명이 끝나지 않는다. 더 큰 비용은 불량이 터진 이후에 발생한다. 범위를 넓게 잡으면 폐기, 재작업, 자발적 수거, 납기 차질 등까지도 비용에 영향을 미친다. 이러한 위협은 고객 리스크로 이어진다. 결국 핵심은 얼마나 빨