AI 클라우데라, 기업 AI 리스크 줄이는 대안으로 ‘합성 데이터’ 제시
클라우데라는 기업 리스크 감소를 위한 도구로 합성 데이터를 제시하며, 이를 체계적으로 관리·운영할 경우 데이터 노출을 줄이면서도 AI 개발을 지속할 수 있다고 강조했다. AI가 기업 운영 전반에 깊숙이 통합되면서 대규모언어모델(LLM)은 고객 지원, 데이터 분석, 개발자 생산성, 지식 관리 등 다양한 업무 영역에 활용되고 있다. 여기에 AI 에이전트까지 부상하면서, AI는 단순히 정보를 검색하고 추론하는 수준을 넘어 실제 업무를 수행하는 단계로 진화하고 있다. 그러나 AI 활용이 확대될수록 프라이버시 리스크에 대한 우려도 커지고 있다. AI 모델의 성능 향상에 필요한 데이터에는 지원 대화 기록, 거래 내역, 운영 로그 등 개인식별정보(PII)와 규제 대상 정보, 기업 고유의 비즈니스 맥락이 포함되는 경우가 많기 때문이다. 합성 데이터는 실제 데이터셋의 핵심 패턴을 반영하면서도 실제 기록을 그대로 재현하지 않도록 알고리즘으로 생성된 데이터다. 이를 활용하면 기업은 민감한 정보 노출 위험을 줄이면서도 AI 모델의 개발과 테스트를 진행할 수 있다. 합성 데이터는 단순한 테이블 데이터 생성 단계를 넘어 진화하고 있다. 기업은 원본 데이터를 직접 사용하지 않고도 실제