[첨단 헬로티] 쿠마가이 이사오 (熊谷 勇雄) 마코(주) 냉간단조에서 성형재에 대한 전처리로서 현 공법에서는 일반적으로 쇼트블라스트(이하 SB)나 산세정에 의한 ‘산화 피막의 제거 처리’, 화학 약품에 의한 ‘인산염 피막+금속비누 피막’을 주로 한 ‘윤활제 피막의 형성 처리(본데라이트 처리)’가 이루어지고 있다(그림 1). SB 처리에서는 철계의 고비중 투사재가 사용되어 입자 사이즈는 수백 μm 이상으로 크고, 그 형상은 구형, 혹은 CCW(컨디션드 컷 와이어)와 같이 모퉁이를 제거해 구형에 근접시키는 것이 일반적이다. 그렇기 때문에 산화 피막 제거 후의 성형재 표면조도는 크고, 단조 성형만으로 제품의 최종 형상․치수를 완성시키는 정밀 단조(네트셰이프)에서는 제품 품질(면성상, 치수 등)의 목표 달성․향상의 장해가 된다. 또한 투사재가 고비중․대경일수록 처리면 근방의 결정립 미세화(가공 경화)가 일어나, 단조 성형 시의 성형재 표층의 소성유동을 방해함으로써 성형 불량이나 금형에 대한 데미지 증가 등 여러 가지 폐해의 요인이 될 수 있다. 산세정 처리나 본데라
[첨단 헬로티] 이토 코이치 (伊藤 公一), 반쇼 히데유키 (番匠 秀行) 富士다이스(주) 1. 서론 냉간단조에 의해 자동차 부품을 비롯해 많은 제품이나 부품이 생산되고 있다. 최근에는 보다 복잡한 형상으로 고정도 부품에 대한 적용이 많아지고, 금형에 대한 부담도 커지는 경향에 있다. 이것에 동반해 금형의 장수명화가 과제가 되고 있다. 동사는 분석․해석, 금형 구조, 생산 기술, 재료 개발의 4가지로, 냉간단조용 금형의 장수명화에 대응하고 있다. 이 글에서는 CAE 해석을 활용한 불량 원인의 파악과 개선 효과의 확인 및 초경합금의 최적 선택에 의해 수명이 8배로 향상된 금형 수명 개선의 대응 사례를 소개한다. 2. 금형 장수명화 대응의 내용 금형 수명의 개선은 전방 압출에 의해 치형 형상을 성형하는 초경제의 냉간단조 금형으로 했다. 수명 형태는 그림 1에 나타낸 치형 도입부의 대경부 균열이며, 금형 수명은 30,000숏이었다. 닙 재종은 TAS 규격 VM-50 상당의 동사 초경의 D60재를 사용했다. D60재의 주된 물성값을 표 1에 나타냈다. 금형 수명의 개선 목표는 150,000숏으로 설정했다. 3. CAE 해석에 의한 최대 주응력 상태의 확인