아이브는 제조업에 특화한 비전 파운데이션 모델(VFM) 기반 검사 솔루션인 ‘아이비전(AiVision)’을 공식 출시했다고 26일 밝혔다. 이 혁신적인 AI 검사 시스템은 제조업 현장의 고질적인 데이터 부족 문제를 해결하고, 품질 검사 자동화의 새로운 전환점을 마련할 것으로 기대된다. 가트너는 2026년까지 AI 프로젝트의 60%가 준비되지 않은 데이터로 인해 실패할 것이라고 전망하며, 특히 데이터 확보가 어려운 제조업의 특성을 지적했다. 기존의 범용 AI 모델을 제조업에 적용하려면 방대한 결함 데이터를 수집하고, 기계 ID, 타임스탬프, 배치 번호 등 다양한 메타데이터를 정제하는 복잡한 과정이 필요했다. 그러나 이러한 과정에서 학습되지 않은 신규 불량에 대한 대응력이 떨어져 현장 활용에 제약이 있었고, 불량 데이터를 수작업으로 수집하고 라벨링하는 데 소요되는 시간과 비용이 과도해 많은 제조업체들이 AI 도입을 포기하기도 했다. 아이브는 이러한 문제를 해결하기 위해 비지도학습 AI 모델을 기반으로 한 아이비전을 개발했다. 이 시스템은 양품 데이터만 학습해도 예상되는 불량을 AI가 자동으로 생성하여 검출할 수 있도록 설계되었다. 또한, 학습되지 않은 신규 불량
제조업계의 인공지능(AI) 도입 열기가 뜨겁지만, 현장에서 체감할 수 있는 투자수익률(ROI)을 실현한 사례는 드문 실정이다. 기술 도입은 했지만 생산성과 수익 증대 효과가 불분명하다는 지적이 잇따르는 가운데, 엠버로드는 이러한 현실적 한계를 정조준한다. 화려한 기술보다는 현장 데이터를 기반으로 한 실질적 문제 해결에 초점을 맞춰, 빠른 PoC와 단계적 확산 전략, 사용자 중심 인터페이스까지 종합적으로 제시하며 “ROI 중심의 AI 도입”이라는 해법을 내놓고 있다. 최근 제조업계는 생산성 향상, 품질 개선, 비용 절감 등 혁신을 목표로 인공지능(AI) 도입에 적극적으로 나서고 있다. 그러나 상당수의 프로젝트가 기대했던 투자수익률(ROI)을 달성하지 못해 현장에서 외면받는 사례가 빈번하게 발생하고 있으며, 이에 따라 AI 도입의 실질적인 효용성에 대한 의문이 제기되고 있다. 이러한 상황에서 화려한 기술 도입보다는 실제 비용 절감과 수익 증대에 초점을 맞춘 AI 프로젝트 접근 방식이 제조업 AI 도입의 난제를 해결할 핵심 대안으로 부상하고 있다. 제조 AI 도입 성공을 위한 과제 전문가들은 현장 데이터 기반의 AI 솔루션 개발 과정에서 외주 AI 용역 기업과의