테크노트 “적게 배워도 똑똑하게”...UNIST, 3D AI 모델 고효율 학습 기술 개발
3D 포인트 클라우드(Point Cloud) 기반 인공지능(AI) 모델이 학습해야 하는 데이터량을 크게 줄이면서도 성능을 유지할 수 있는 기술이 개발됐다. 자율주행차와 로봇 등 대규모 3D 데이터를 다루는 분야에서 학습 시간과 연산 비용을 줄이는 데 큰 도움이 될 것으로 기대된다. UNIST 인공지능대학원 심재영 교수팀은 3D 포인트 클라우드 데이터를 효과적으로 압축해 학습 효율을 높이는 ‘데이터 증류(dataset distillation)’ 기술을 개발했다고 1일 밝혔다. 데이터 증류는 대규모 학습 데이터에서 핵심 특징만을 추출해 ‘요약 데이터’를 만드는 기술이지만, 3D 포인트 클라우드는 점의 순서가 정해져 있지 않고 물체가 회전된 경우가 많아 적용이 어려운 형태로 꼽혀 왔다. 요약 데이터의 완성도를 높이려면 원본 데이터와 비교·매칭 과정이 필수지만, 이러한 특성 때문에 엉뚱한 부위가 비교되거나 같은 물체도 서로 다른 물체로 인식되는 문제가 발생한다. 연구팀은 이 문제를 해결하기 위해 두 가지 핵심 기술을 결합했다. 첫째, 순서가 일정하지 않은 점 데이터의 의미 구조를 자동으로 정렬해주는 손실 함수(SADM)를 적용했다. 둘째, 물체의 회전 각도를 AI가