[사출금형 성형 기술 실무 4] 러너 밸런싱 [사출금형 성형 기술 실무 4] 러너 밸런싱 사례 이번 연재는 컴퓨터 해석을 기반으로 하는 사출금형 설계의 핵심 기술인 유동시스템 설계를 중심으로 사례를 들어 설명하고, 요소 기술의 특성들을 분석하여 설계자들에게 관련 기술 정보를 제공하고자 한다. 사출성형 기술은 유체 성질에 관한 이론적 배경을 근거로 사출성형의 다양한 파라미터의 특성을 분석하여 성형기술자에게 유익한 정보를 제공할 것이다. Runner Balancing 러너 밸런스는 러너의 직경을 변화시켜 성형품에 작용하는 사출압력이 동일하게 충진할 수 있도록 돕는 역할을 한다. 여기서 게이트의 크기는 동일한 전제 조건으로 러너의 밸런스를 맞추는 것이며, 캐비티 내에서 사출압력을 균일하게 함으로써 성형품의 트러블을 최소화하고 품질을 안정화하는데 있다. 지난 달에는 러너의 배치를 ‘H’형으로 배치하여 수지 유동의 균일성을 확인했고, 아울러 러너 크기를 구하여 전사모사를 통해 검증한 바 있다. 이번에는 같은 형상을 가지고 ‘일자’형으로 배치하여 러너 밸런스의 치수 결정하기와 전사모사를 통해 러너의 밸런스를 자동으로 결정할 수
[사출금형 성형 기술 실무(9)] 러너리스 금형 [사출금형 성형 기술 실무(9)] 핫러너 시스템의 가열 방식 핫러너 시스템의 가열 방식 핫러너 시스템을 가열하는 방식은 크게 내부 가열 방식과 외부 가열 방식이 있다. 매니폴드 블록뿐 아니라 노즐에도 모두 내부 가열 방식과 외부 가열 방식을 적용할 수 있다. 현재 시판되고 있는 핫러너 시스템은 매니폴드 블록의 경우 거의 대부분이 외부 가열 방식을 채택하고 있고, 노즐의 경우에도 내부 가열 방식보다는 외부 가열 방식을 채택하여 사용하는 경우가 많다. 그림 6에서 (a)와 (b)는 내부 가열 방식이고, (c)는 외부 가열 방식을 도식적으로 나타내고 있다. 그림 6. 내부 가열 방식 (a), (b)와 외부 가열 방식 (c)의 개략도 1. 내부 가열 방식 내부 가열 방식은 유로의 중앙에 히터를 집어 넣어 유로 중앙의 히터의 열에 의해 바깥쪽에 형성된 유로 내의 수지를 용융시키는 방식이다. 내부 가열 방식의 경우 유로의 외벽에 수지 고화층이 생기게 되고, 이 수지 고화층이 단열의 역할도 하게 된다. 유로는 히터 표면에서부터 용융된 일정한 두께만큼만 형성되게 되고, 용융된 수지의 온도 분포도 히터쪽
[사출금형 성형 기술 실무 4] 러너 밸런싱 [사출금형 성형 기술 실무 4] 러너 밸런싱 사례 Runner Balancing 사례 우선 성형품 용량은 CAD 데이터에서 추출한 값으로 개당 11g이다. 러너 레이아웃은 그림 4 와 같으며, 편의 상 변수는 6개로 러너의 길이와 러너 직경으로 a, b, c 구분했다. 계산 순서에 따라 성형품 중량(g), 초기 러너 길이와 직경, 단계별 용융수지 용량, 사출 시간, 초당 사출량, 전단 변형률 속도, 점도와 압력저항 즉 압력손실을 구한다. 그림 5는 전단률(19,174.84/s)에서의 PA66 점도값을 구한 것이며, 그림 6은 실제 계산값이다. 그림 4. 러너 레이아웃 및 변수 그림 5. 전단률(11624.56/s)에서의 PA66 점도 그림 6. 2차 러너 밸런스 계산 결과 다음은 위의 계산식에 따라 적용한 사례와 해석 프로그램을 통해 자동으로 러너 밸런스한 결과를 제시하며 비교하고자 한다. 먼저 그림 6은 2차 러너 밸런스를 위하여 계산한 결과이다. 사출 시간은 1.1초이다. 초기 1차 러너 직경 (‘φa’)은 ‘H’형 러너에 비하여 약 10% 크게 하여 적용했고,
이번 연재는 컴퓨터 해석을 기반으로 하는 사출금형 설계의 핵심 기술인 유동시스템 설계를 중심으로 사례를 들어 설명하고, 요소 기술의 특성들을 분석하여 설계자들에게 관련 기술 정보를 제공하고자 한다. 사출성형 기술은 유체 성질에 관한 이론적 배경을 근거로 사출성형의 다양한 파라미터의 특성을 분석하여 성형기술자에게 유익한 정보를 제공할 것이다. 게이트 시스템 1. 게이트의 기능 게이트는 러너와 캐비티를 연결하는 중간 매체이다. 그림 1에서와 같이 게이트는 캐비티에 용융수지를 충진하도록 안내하는 기능과 충진 완료 후 캐비티 내의 수지가 역류하는 것을 방지하는 기능을 가지고 있다. 게이트는 게이트의 위치, 게이트의 수, 형상 치수는 성형품의 외관이나 성형 효율 및 치수 정밀도에 큰 영향을 준다. 따라서 게이트는 용융수지가 캐비티 안에서 흐르는 방향, 웰드라인(Weld Line)의 생성, 성형 후 게이트의 제거 등을 고려하여 결정해야 하며, 설계자가 어떤 결정을 하느냐에 따라 성형품의 품질에 결정적인 영향을 미치므로 각별한 검토와 지식이 필요한 부분이기도 한다. 전체적인 금형의 성형 시스템(구조)에 있어서 대체로 가장 얇은 부분이다. 크기와 위치는 여러 가지의 필요
[사출금형 성형 기술 실무 1] 러너 전산모사 [사출금형 성형 기술 실무 2] 유동저항과 러너 크기 유동저항과 러너 크기 일반적으로 다수 캐비티 금형의 러너일 경우 용융 수지를 게이트까지 가능한 빠르게 흘러가게 하기 위해서는 러너의 직경을 크게 하고 과도한 냉각으로 영향을 받지 않도록 한다. 러너 단면이 너무 작으면 과도한 사출 압력이 요구되고 용융 수지가 캐비티까지 도달하는데 시간도 많이 걸린다. 러너가 크면 성형품의 품질이 좋아지고 웰드라인, 플로라인, 싱크마크, 내부응력이 최소화되는 장점이 있다. 그러나 필요 이상의 러너 크기는 다음 4가지 요인을 동반하게 된다. ① 큰 러너일수록 더 많은 냉각이 요구되고 사이클 타임이 길어지게 된다. ② 커진 러너로 늘어난 용융 수지 무게만큼 상대적으로 사출기계 용량이 커지게 된다. 이것은 캐비티에 충진되는 수지의 무게뿐만 아니라 실린더 내 가소화 장치의 시간당 가소화 능력 측면에서도 영향을 준다. ③ 러너가 클수록 더 많은 스크랩을 만들게 되는데, 그것들은 땅에 떨어지거나 재생되지만 결국 가동 비용과 오염의 가능성을 증가시키는 원인이 된다. ④ 캐비티가 8개인 2단 금형일
[사출금형 성형 기술 실무 1] 러너 전산모사 [사출금형 성형 기술 실무 2] 유동저항과 러너 크기 이번 연재는 컴퓨터 해석을 기반으로 하는 사출금형 설계의 핵심 기술인 유동시스템 설계를 중심으로 사례를 들어 설명하고, 요소 기술의 특성들을 분석하여 설계자들에게 관련 기술 정보를 제공하고자 한다. 사출성형 기술은 유체 성질에 관한 이론적 배경을 근거로 사출성형의 다양한 파라미터의 특성을 분석하여 성형기술자에게 유익한 정보를 제공할 것이다. 러너 전산모사 지난 호에서는 전산모사를 통해 실험한 결과를 요약, 각 러너의 크기에 따라 사출 시간, 수지 온도, 러너 압력에 어떤 영향을 미치고 있는지 관찰한 바 있다. 아울러, 메인 러너의 직경을 어떻게 선정할 것인가에 대하여 도식적으로 제시하고 근거를 수식화하여 제시했다. 이번에는 원래 경험이 풍부한 설계자가 러너 레이아웃을 설계하고 금형 설계가 완료되어 제작까지 완료된 데이터를 분석한다. 이미 지난 호에서 제시했던 1차, 2차, 3차 러너의 설계 방법에 따라 설계한 것과 최적화된 것은 아니지만 전산모사를 통해 제시된 결과를 경험적으로 판단하여 설계자에게 제시하고자 하는 결과값을 분석한다. 이러한 3가지 유형을 가지고