배터리는 스마트폰과 전기차 등 현대 사회의 필수 기술이지만 화재·폭발 위험과 높은 비용이라는 한계를 안고 있다. 이를 해결할 대안으로 전고체 배터리가 주목받아 왔지만, 안전성·성능·가격을 동시에 만족시키는 데에는 어려움이 있었다. 이러한 가운데 국내 연구진이 비싼 금속을 추가하지 않고 구조 설계만으로 전고체 배터리 성능을 수 배 향상시키는 데 성공했다. KAIST는 신소재공학과 서동화 교수 연구팀이 서울대학교 정성균 교수, 연세대학교 정윤석 교수, 동국대학교 남경완 교수 연구팀과의 공동 연구를 통해 저비용 원료를 사용하면서도 폭발과 화재 위험이 낮고 성능이 우수한 전고체 배터리 핵심 소재 설계 방법을 개발했다고 7일 밝혔다. 일반 배터리는 액체 전해질 안에서 리튬 이온이 이동하는 반면 전고체 배터리는 액체 대신 고체 전해질을 사용한다. 이로 인해 전고체 배터리는 안전성이 높지만 고체 내부에서 리튬 이온이 빠르게 이동하도록 만들기 위해서는 그동안 값비싼 금속을 사용하거나 복잡한 제조 공정이 필요하다는 한계가 있었다. 연구팀은 전고체 전해질 내부에 리튬 이온이 원활하게 이동할 수 있는 통로를 만들기 위해 산소(O²⁻)와 황(S²⁻)과 같은 이가 음이온에 주목했다
착용형(웨어러블) 전자기기에 쓰이는 섬유형 에너지 저장장치의 성능을 소량의 첨가제만으로도 늘리는 기술이 개발됐다. 한국과학기술연구원(KIST)은 전북분원 기능성복합소재연구센터 김남동 책임연구원과 주용호 선임연구원 연구팀이 한국과학기술원(KAIST) 이진우 교수 연구팀과 공동으로 소량의 첨가제로 이온전도도를 크게 높인 고분자 전해질을 개발했다고 3일 밝혔다. 기존 고분자 기반 고체 전해질은 자유롭게 구부릴 수 있는 특성으로 섬유 형태로 만든 에너지 저장장치로 주목받고 있으나 이온전도도가 낮아 실제 활용이 어려운 것이 문제였다. 이에 연구팀은 자유전자 구조를 안정적으로 유지하면서도 외부 자극에는 민감하게 반응하는 ‘4-하이드록시 템포’(HyTEMPO)라는 유기 분자를 활용하는 기술을 개발했다. 이 유기 분자를 고체 전해질에 첨가하자 고체 상태에서도 고분자 내부에서 막힌 길을 뚫어주는 고속도로처럼 작용해 이온이 빠르게 흐를 수 있게 해줘 이온 전도도가 기존 대비 17배 늘어난 ㎝당 3.2mS(밀리지멘스, 전기 전도도 단위)로 늘어났다고 연구팀은 설명했다. 또 이온 이동뿐 아니라 에너지를 저장하고 내보내는 성능까지 함께 개선해 섬유 형태 전극만으로 에너지 저장장치를