반도체 제조 현장은 복잡한 공정 구조와 부족한 불량 데이터, 폐쇄적 운영 환경 등으로 인해 AI 적용 속도가 더딘 분야다. RTM이 공개한 Meta-aware MLOps 기반 EHM(Equipment Health Manager) 플랫폼은 이러한 장벽을 정면으로 해결하기 위한 새로운 접근법이다. 공정·설비별 메타 정보를 활용하는 데이터 파이프라인, 자동 모델 생성·배포 구조, 헬스 스코어 기반 이상 탐지, 가스 누출·플라즈마 아킹·웨이퍼 센터링 이상까지 감지하는 맞춤형 모델 등을 결합해 AI를 양산 환경에 안정적으로 적용할 수 있는 체계를 제공한다. 제조사가 직면한 “AI를 쓰고 싶지만 적용이 어렵다”는 딜레마를 풀어내는 현실적 해법으로 주목받고 있다. 반도체 제조업에 AI 적용이 어려웠던 이유와 산업적 배경 반도체 산업은 전 세계 제조업 중에서도 가장 복잡한 생산 구조를 갖고 있다. 수백 단계 공정, 장비·레시피마다 다른 프로세스 조건, 설비 편차, 웨이퍼별 데이터 변동성이 동시에 존재한다. 이런 환경에서 AI를 적용하기 위해서는 막대한 양의 정제된 데이터와 공정적 이해가 필요하지만, 반도체 제조는 근본적으로 불량률이 낮아 ‘불량 데이터가 희소한 산업’이라는
AI 기술이 제조 현장에 본격적으로 적용되며 품질검사와 설비진단의 방식이 근본적으로 달라지고 있다. 기존의 룰 기반 시스템이 가진 한계를 뛰어넘어 딥러닝과 트랜스포머 기반의 비전 시스템이 빠르게 상용화되고 있으며, 고정밀 진단과 유연한 공정 최적화가 가능해졌다. 특히 한국생산기술연구원의 제조AI연구센터는 의료기기, 자동차 부품, 공정 설비 등 다양한 산업 분야에 AI를 적용한 혁신 사례를 다수 제시하며 주목받고 있다. 이 글에서는 제조업 혁신의 중심에 서 있는 AI 기반 품질검사 및 설비진단 기술을 다각도로 조명한다. AI와 제조업, 새로운 융합의 시대 산업계 전반에서 인공지능(AI) 기술의 적용이 빠르게 확산되고 있는 가운데, 제조업 또한 그 흐름에 본격적으로 편입되고 있다. 과거 자동화와 센서 기반의 제어 시스템에 머물렀던 제조 공정은 이제 AI 기반의 지능형 시스템으로 진화하고 있으며, 이는 단순한 기술 업그레이드를 넘어 전반적인 생산 방식의 패러다임을 바꾸고 있다. 한국생산기술연구원(이하 생기원)은 이러한 변화의 중심에서 제조AI연구센터를 통해 AI의 실질적 적용 가능성과 기술 상용화를 위한 연구에 몰두하고 있다. 생기원이 정의하는 제조AI의 핵심 적