대기오염의 주요 원인 가운데 하나인 이산화질소를 보다 정확하게 감시해야 할 필요성이 커지고 있다. 이산화질소는 자동차 배기가스와 산업 활동 등에서 발생해 건강과 환경에 영향을 미치는 물질로, 이를 정밀하게 감지할 수 있는 기술은 도시 대기질 관리의 핵심 요소로 꼽힌다. 광주과학기술원(GIST)은 신소재공학과 이상한 교수 연구팀이 백금과 금 등 값비싼 귀금속 촉매를 사용하지 않고도 이산화질소를 매우 민감하게 감지할 수 있는 새로운 가스센서 기술을 개발하는 데 성공했다고 밝혔다. 이번 연구는 센서 성능을 높이기 위해 귀금속 촉매에 의존해 온 기존 방식의 한계를 넘어, 비용 부담을 낮추면서도 성능을 크게 향상시킬 수 있는 대안을 제시했다. 일반적으로 금속산화물 가스센서는 공기 중 특정 기체가 센서 표면과 반응할 때 발생하는 전기적 변화를 감지해 유해가스 농도를 측정한다. 그동안 널리 사용돼 온 텅스텐산화물 센서는 구조적 안정성은 높지만 반응 속도가 느리고 민감도가 낮다는 한계를 지녀왔다. 이를 보완하기 위해 센서 표면에 반응을 촉진하는 촉매를 추가하는 방식이 활용돼 왔으며 금, 백금, 팔라듐 등 귀금속이 주로 사용됐다. 그러나 귀금속 촉매는 가격이 높고 수급이 불
국내 연구진이 녹색광이 50% 이상 포함된 실내조명을 통해서도 작동이 가능한 초고감도 상온 가스 센서를 개발했다. 한국과학기술원(KAIST)은 신소재공학과 김일두 교수 연구팀이 가시광을 활용해 상온에서도 초고감도로 이산화질소를 감지할 수 있는 가스 센서를 개발했다고 10일 밝혔다. 금속산화물 반도체 기반 저항 변화식 가스 센서는 가스 반응을 위해 300도 이상 가열이 필요해 상온 측정에 한계가 있었다. 이에 대한 대안으로 최근 금속산화물 기반 광활성 방식 가스 센서가 크게 주목받고 있지만 기존 연구는 인체에 유해한 자외선 내지는 근자외선 영역의 빛을 활용하는 데에 그쳤다. 이에 연구팀은 이를 녹색 빛을 포함한 가시광 영역으로 확대해 범용성을 크게 높이고 녹색광을 조사했을 때 이산화질소 감지 반응성이 기존 대비 52배로 증가하는 것을 확인했다. 특히 실내조명에 사용되는 백색광을 쬐어 최고 수준의 이산화질소 가스 감지 반응성(0.8 ppm NO₂, 감도=75.7)을 달성하는 데 성공했다. 김일두 교수는 “대표적인 대기 환경 유해가스인 이산화질소 가스를 우리 주변에서 일반적으로 접근할 수 있는 녹·청색광(430~570 nm) 영역의 가시광을 활용해 상온에서 초고감