한국과학기술원(KAIST)은 인공지능(AI)을 이용해 효율을 높인 차세대 아연공기전지를 개발했다고 4일 밝혔다. 값싼 아연 음극과 산소 양극으로 구성된 아연공기전지는 물 기반 전해질을 사용해 리튬이온전지와 달리 발화 위험이 없고 에너지 밀도가 높아 차세대 전지로 주목받고 있다. 다만 백금·이리듐 등 귀금속을 촉매로 사용해 비용이 많이 든다는 한계가 있다. KAIST 강정구 교수와 연세대 한병찬 교수, 경북대 최상일 교수, 성균관대 정형모 교수 공동 연구팀은 귀금속 기반 촉매보다 활성도와 안정성이 높으면서도 값이 저렴한 전이금속산화물 이종접합 촉매를 개발했다. AI를 활용해 기존 양자역학 계산만으로는 분석하기 어려웠던 계면에서의 원자구조를 규명, 높은 에너지 밀도를 구현해 냈다. 강정구 교수는 “전이금속산화물 기반 차세대 촉매 소재는 가격 경쟁력이 있고 촉매 활성도도 높아 아연공기전지의 상용화에 기여할 것”이라며 “중·소형 전력원뿐만 아니라 전기 자동차까지 활용 범위를 확대 적용할 수 있을 것으로 기대된다”고 말했다. 한편 이번 연구 성과는 국제 학술지 ‘에너지 스토리지 머터리얼스’(Energy Storage Materials) 지난 1월 14일 자에 실렸다.
한국과학기술원(KAIST)은 신소재공학과 강정구 교수 연구팀이 우수한 성능의 아연공기전지를 기반으로 자가발전형 그린수소 생산 시스템을 개발했다고 22일 밝혔다. 그린수소는 신재생에너지 전력을 이용해 수전해(물을 전기분해해 수소를 생산하는 기술) 방식으로 만들어 내는 수소다. 생산 과정에서 탄소를 배출하지 않아 청정 연료로 불리지만, 신재생에너지의 발전량이 불규칙해 물 분해 효율이 낮다는 한계가 있다. 이에 공기 중 산소를 산화제로 사용하는 공기전지가 신재생에너지를 대체할 동력원으로 주목받고 있다. 특히 값싼 아연 음극과 산소 양극으로 구성된 아연공기전지는 물 기반 전해질을 사용해 리튬이온전지와 달리 발화 위험이 없고 에너지 밀도가 높다. 다만 귀금속 촉매를 사용하기 때문에 비용이 많이 들고 장기간 충·방전 시 성능이 급격히 떨어지게 된다. 연구팀은 산화 그래핀(흑연의 한 층에서 떼어낸 2차원 물질)에 금속 유기 골격체(MOF·금속과 유기물을 결합한 다공성 소재)를 성장시켜 비(非) 귀금속 촉매를 개발했다. 이를 아연공기전지에 적용한 결과 기존 전지보다 5배 높은 에너지 밀도를 보였으며, 반복적인 충·방전에도 장시간 안정적인 구동이 가능함을 확인했다. 강정구
나노섬유 정렬로 겔전해질 내부에 이온 전달통로 형성해 전지성능 향상 차세대 이차전지 상용화 해법 제시 … ‘Energy Storage Materials’ 게재 최근 스마트워치, 헬스케어 밴드, 이어 웨어(Ear-worn) 등 웨어러블 디바이스의 인기가 급증하면서 이들 디바이스에 사용되는 에너지 저장장치에 대한 수요가 급격히 증가하고 있다. 이러한 상황에서 아연공기전지가 주목받고 있다. 아연공기전지는 저렴한 아연 음극과 물 기반의 전해질, 그리고 가벼운 산소를 양극으로 사용해 발화 위험이 없고, 리튬이온전지에 비해 에너지 밀도가 높아 웨어러블 디바이스용 이차전지의 대안으로 꼽혀 왔다. 그러나 아연공기전지는 공기 중 산소를 양극 연료로 활용하기 위해 열린 전극 구조를 가져야 하므로 물이 쉽게 증발하고, 물이 증발하면 전지 성능이 급속히 감소하는 문제가 있어 상용화에 어려움을 겪고 있었다. 이에 한국생산기술연구원(이상목 원장, 이하 생기원)과 한양대학교(이기정 총장, 이하 한양대) 공동 연구팀이 ‘아연공기전지용 복합 겔전해질’ 기술 개발에 성공하며, 웨어러블 디바이스용 이차전지 상용화의 실마리를 풀었다. 생기원 섬유솔루션부문의 윤기로 박사 연구팀과 한양대 최선진·
현재 널리 쓰이는 리튬이온전지를 대체할 후보로 거론되는 '아연공기전지'의 성능을 향상하는 광활성 촉매 기술이 개발됐다고 한국과학기술연구원(KIST)이 밝혔다. KIST에 따르면 에너지저장연구센터 이중기 박사 연구팀은 아연공기전지의 느린 촉매 반응을 개선하기 위해 반도체의 계면(interface, 기체·액체·고체 가운데 인접한 두 가지 종류 사이의 경계면) 특성을 이용한 p-n 접합구조 광활성 복합촉매를 개발하는 데 성공했다. 광활성 복합촉매란 빛 에너지를 흡수해 화학반응을 촉진하는 화합물을 말한다. 연구진이 제작한 p-n 접합구조 광활성 복합촉매를 이용하면 빛이 없는 환경에서도 기존 아연공기전지의 최고 성능과 유사한 에너지 밀도를 낼 수 있었고, 태양광이 있는 상황에서는 에너지 밀도를 약 7% 높일 수 있었다. 충·방전도 1천 사이클까지 뒷받침해 기존에 알려진 촉매 중 가장 우수했다고 연구진은 설명했다. 이중기 박사는 "리튬이온배터리의 대안으로 부상하고 있는 금속공기전지의 난제를 해결하는 데 광활성 복합촉매 제조 기술이 도움이 될 것"이라고 기대했다. 이번 연구는 에너지·환경 분야 국제학술지 '응용 촉매 B: 환경'(Applied Catalysis B: En