텍사스대 연구팀과 공동연구…전고체 배터리 개발 '속도' SK온이 상온에서도 구동할 수 있는 리튬메탈 배터리용 고분자 전해질 공동개발에 성공했다. SK온은 미국 텍사스대의 하디 카니 교수 연구팀과 신규 고분자 전해질 'SIPE'(single-ion conducting polymer electrolyte)를 개발했다고 16일 밝혔다. 고분자 전해질은 가격이 저렴하고 제조가 용이해 차세대 고체 배터리로 주목받는다. 다만 산화물계나 황화물계보다 이온 전도도가 낮아 70∼80℃ 고온에서만 구동하는 점이 극복해야 할 과제로 꼽혔다. SIPE는 이온 전도도와 리튬 이온 운반율을 개선해 이를 해결했다. 기존 고분자 전해질 대비 상온 이온 전도도를 약 10배까지 끌어올렸으며, 리튬 이온 운반율도 5배 가까이 늘렸다. 리튬 이온 전도도와 운반율이 높아지면 배터리 출력 및 충전 성능도 향상된다. 실험 결과 SIPE를 적용한 배터리는 저속 충방전 대비 고속 충방전 시에도 배터리 방전용량이 77%를 유지했다. 또 SIPE는 높은 기계적 내구성을 갖춰 대량생산이 가능하며, 열적 안전성이 우수해 250℃ 이상 고온에도 견딜 수 있다. 차세대 복합계 고체 배터리에 SIPE를 적용하면 충
한국과학기술원(KAIST)은 땀의 미세한 포도당 수치 진단이 가능한 웨어러블 기술을 개발했다고 14일 밝혔다. KAIST에 따르면 박인규 KAIST 교수와 정준호 한국기계연구원(KIMM) 박사 공동연구팀은 ‘전기방사 섬유 상 금속 및 금속산화물 기반 나노구조체 전사 기술’을 개발했다. 연구팀은 일상 속 웨어러블 헬스케어 응용을 위해 기반 고분자의 열적 거동 특성(열 변형 특성)·산소 플라즈마 처리를 통한 표면 특성을 고려해, 신축성이 우수한 마이크로 스케일의 전기방사 섬유 위 금속·금속산화물 나노구조체의 안정적인 전사를 선보였다. 연구팀은 금속·금속산화물 기반의 정교한 나노구조체를 수 마이크로 스케일의 곡면 형태인 전기방사 섬유 위에 전사하는 안정적인 공정을 개발했다. 나노 원형·마이크로 원형·나노 사각형·나노 그물·나노 라인·나노 십자가와 같은 다양한 구조체의 전기방사 섬유 상 전사가 가능할 뿐 아니라, 금·은·알루미늄·니켈과 같은 금속 재료부터 이산화티타늄·이산화규소와 같은 금속산화물까지 다양한 재료의 나노구조체 전사가 가능하다. 연구팀은 열 성형이 가능한 열가소성 고분자를 선정해 안정적으로 섬유화했으며 산소 플라즈마 처리를 통한 나노구조체 지지 고분자의
차세대 에너지원으로 주목받고 있는 고체산화물 연료전지의 성능을 획기적으로 높일 수 있는 기술이 개발됐다. 한국에너지기술연구원은 최윤석 박사가 한국과학기술원(KAIST) 정우철 교수, 부산대 박범경 교수 연구팀과 공동으로 4분 만에 고체산화물 연료전지의 성능을 3배로 높일 수 있는 촉매 코팅 기술을 개발했다고 12일 밝혔다. 연료전지는 수소를 활용해 전기를 생산하는 전지로, 이산화탄소를 배출하지 않아 친환경 에너지원으로 불린다. 그중 고체산화물 연료전지는 수소 이외에도 천연가스, 암모니아 등 다양한 연료로부터 전기에너지를 생산할 수 있는 데다 발전 효율도 높아 활발하게 연구되고 있다. 고체산화물 연료전지의 성능은 공기극(양극)에서 일어나는 산소환원반응에 의해 결정된다. 연료극(음극)에서 일어나는 반응에 비해 공기극의 반응 속도가 느리다는 한계 때문에 활성이 높은 공기극 소재를 개발하기 위한 연구가 시도되고 있지만, 아직은 화학적 안정성이 부족한 실정이다. 연구팀은 산업계에서 널리 사용되는 공기극 소재인 'LSM-YSZ 복합전극'(망간 기반 페로브스카이트 촉매(LSM)와 이트리아 안정화 지르코니아(YSZ)로 구성된 복합전극)의 표면에 ㎚(나노미터·10억분의 1m
한국과학기술원(KAIST)은 잡아당겨도 고화질을 그대로 유지할 수 있는 유연한 유기발광다이오드(OLED) 디스플레이를 개발했다고 11일 밝혔다. 전기및전자공학부 유승협 교수 연구팀은 동아대 문한얼 교수, 한국전자통신연구원(ETRI) 연구팀과 공동으로 유연성이 뛰어난 초박막 OLED를 개발했다. 이를 각각의 섬(Island)으로 이뤄진 단단한 발광 구조체 사이에 끼워 넣어 신축성을 확보했다. 기존 신축형 디스플레이는 단단한 발광 영역에 구부림 연결부를 잇는 방법으로 신축성을 확보하는데, 이를 늘리면 빛을 내지 않는 연결부가 늘어나면서 전체 발광 면적이 줄어드는 한계가 있다. 연구팀이 개발한 디스플레이는 잡아당기면 숨겨진 OLED가 모습을 드러내면서 높은 발광 밀도를 구현할 수 있다. 신축 전 97%에 달하는 발광 면적비는 양쪽에서 30%씩 잡아당겨도 87%로, 10%밖에 줄지 않은 것으로 나타났다. 기존 플랫폼의 발광면적비 감소율(60%)보다 훨씬 낮은 수치다. 동작을 반복하거나 외력을 가해도 안정적으로 작동 가능하다고 연구팀은 설명했다. 유승협 교수는 "우수한 성능과 안정성이 확보된 OLED 기술을 그대로 활용하면서도 기존 신축형 디스플레이 한계를 극복할 수
국내 연구진이 녹색광이 50% 이상 포함된 실내조명을 통해서도 작동이 가능한 초고감도 상온 가스 센서를 개발했다. 한국과학기술원(KAIST)은 신소재공학과 김일두 교수 연구팀이 가시광을 활용해 상온에서도 초고감도로 이산화질소를 감지할 수 있는 가스 센서를 개발했다고 10일 밝혔다. 금속산화물 반도체 기반 저항 변화식 가스 센서는 가스 반응을 위해 300도 이상 가열이 필요해 상온 측정에 한계가 있었다. 이에 대한 대안으로 최근 금속산화물 기반 광활성 방식 가스 센서가 크게 주목받고 있지만 기존 연구는 인체에 유해한 자외선 내지는 근자외선 영역의 빛을 활용하는 데에 그쳤다. 이에 연구팀은 이를 녹색 빛을 포함한 가시광 영역으로 확대해 범용성을 크게 높이고 녹색광을 조사했을 때 이산화질소 감지 반응성이 기존 대비 52배로 증가하는 것을 확인했다. 특히 실내조명에 사용되는 백색광을 쬐어 최고 수준의 이산화질소 가스 감지 반응성(0.8 ppm NO₂, 감도=75.7)을 달성하는 데 성공했다. 김일두 교수는 “대표적인 대기 환경 유해가스인 이산화질소 가스를 우리 주변에서 일반적으로 접근할 수 있는 녹·청색광(430~570 nm) 영역의 가시광을 활용해 상온에서 초고감
서울대 공대 전기·정보공학부 홍용택 교수팀, 초소형 유연·신축성 전자 기기 상용화 앞당길 것 서울대학교 공과대학은 전기·정보공학부 홍용택 교수 연구팀이 고신축성·고유연성 전극/기판에 마이크로 LED 등의 미세 전자 소자를 물리적·전기적으로 연결하는 ‘위치 선택적 집적 기술(A site-selective integration strategy)’을 개발했다고 밝혔다. 이번 연구 결과는 전자 분야의 세계 최고 학술지 ‘네이처 일렉트로닉스(Nature Electronics)’에 5월호 표지논문으로 게재됐다. 스트레처블 디스플레이, 전자 피부 등 유연성 및 신축성 전자 분야에서는 단단한 물성을 가진 전자 소자를 부드러운 물성을 가진 전극/기판에 물리적·전기적으로 연결해야 한다. 그러나 기존의 이방성 도전 필름 등은 자체의 단단한 물성으로 인해 전극/기판의 신축성과 유연성을 저하시키고, 반면에 부드러운 물성의 접착제는 물리적 연결의 안정성이 낮은 문제가 있다. 또한, 소자의 크기가 점차 줄어들면서 좁은 간격의 전극 단자 사이에 전기적 단락 없이 소자와 회로를 연결하는 것이 어려워졌다. 연구팀은 이러한 문제에 대응해 새로운 소자 집적 방식인 ‘위치 선택적 집적 기술’을
이 글에서는 전력계통의 수급 조정·제어에 관한 기본적인 해설로서 거버너(Governor) 프리, 부하 주파수 제어(LFC), 경제 부하 배분 제어(EDC) 등에 대해 설명한다. 또한 재생가능 에너지(재에너지) 연계 확대 시의 수급 조정·제어 면의 영향과 대책, 광역적인 수급 조정·제어에 대해서도 간단히 소개한다. 주파수 변동의 발생 메커니즘 및 주파수 변동의 영향 1. 주파수 변동의 발생 메커니즘 전력계통에서는 부하(수요)와 발전(공급)의 균형이 깨지면 주파수가 변동하는데(예를 들어 부하보다 발전 쪽이 큰 경우에는 주파수가 상승한다), 이 원리에 대해 간단히 설명한다. 먼저 하나의 동기발전기를 생각한다(그림 1). 동기발전기에서는 증기터빈 등의 회전자를 회전시키려는 토크(Tm)와 전기적인 출력 토크(Te)가 균형을 이룬 상태에서 회전수(ω)가 일정하게 되고, 이것이 균형을 이루지 않은 상태에서는 동기발전기의 회전수가 상승 혹은 저하한다. 예를 들어 증기터빈 등의 토크 쪽이 크면, 그만큼이 동기발전기의 회전 에너지로서 축적되어 회전수가 상승한다. 이때, 동기발전기의 관성상수(M)가 클수록 회전수의 변화는 완만해진다. 전력계통에는 다수의 동기발전기가 있는데, 이
산업혁명 이후, 제조업은 끊임없는 기술 혁신을 통해 생산성과 효율성을 높여왔다. 현재 제조업은 4차 산업혁명의 중심에 있으며, 그 중 하나의 핵심 기술은 로봇 비전 시스템이다. 특히 3D 로봇 비전 시스템은 현대 제조업에서 필수적인 요소로 자리잡고 있다. 이번 글에서는 제조업에서 왜 로봇의 눈이 필요한지와 이에 대한 시대적 흐름을 살펴보겠다. 로봇의 눈, 3D 비전 시스템의 필요성 1. 정확한 부품 처리와 조립 제조 공정에서 정확한 부품의 선택과 배치는 생산 효율성과 제품 품질에 직결된다. 전통적인 자동화 시스템은 고정된 위치에서 정형화된 작업만을 수행할 수 있지만, 3D 비전 시스템은 다양한 위치와 각도에서 부품을 인식하고 처리할 수 있어 더 유연한 생산 공정을 가능하게 한다. Pickit 3D 비전 시스템은 팔레트나 빈(통)에서 물체를 집어 원하는 위치에 정확하게 놓을 수 있도록 도와준다. 2. 숙련된 노동력 부족 문제 해결 제조업체들은 숙련된 노동력 부족으로 인해 어려움을 겪고 있다. 특히, 반복적이고 단순한 작업은 인력의 소모를 유발하며 생산성을 저하시킨다. 로봇 비전 시스템은 이러한 작업을 자동화하여 인력을 보다 고부가가치 작업에 투입할 수 있게 한
이 글에서는 카본 뉴트럴 달성을 위해 재생가능 에너지의 주력 전원화를 지향하는 전력 시스템에 관련된 논점을 개관하는 동시에, 여러 가지 과제 해결의 기수로 지목되고 있는 가상 전력 플랜트(Virtual Power Plant: VPP)에 관한 일본의 대응, 현시점의 달성 정도, 앞으로의 과제와 전망에 대해 다룬다. VPP란 다수의 축전지, 전기자동차, 급탕기 등의 축에너지 기기, 자가용 발전기나 에네팜(가정용 연료전지) 등의 창조에너지 기기, 에어컨, 조명, 생산 설비와 같은 전력 부하 등의 기기군을 통신망을 통해 통합 관리해 마치 단일 발전기처럼 기능시키는 기술을 가리키며, 에너지 매니지먼트의 한 형태라고 할 수 있다. 전력 시스템에서는 전기의 총발전량과 그 소비에 해당하는 총수요량이 어떠한 순간에서도 일치하지 않으면 안 된다. 기상 상황이나 시간대에 의해 발전 출력이 바뀌게 되는 태양광 발전이나 풍력 발전은 변동성 재생가능 에너지(Variable Renewable Energy: VRE)라고 불리며, 이들이 주류의 전원이 되는 상황에서는 전력 시스템의 운용이 어려워진다는 것을 쉽게 상상할 수 있다. 이러한 어려움을 극복하기 위해서는 전력의 수요 그 자체나 수
2023년 9월 미쓰도요는 세계 최고 수준의 정도를 자랑하는 CNC 3차원 측정기 LEGEX에 타쿠미(장인)의 기능을 더해 정도를 더욱 향상시킨 LEGEX 타쿠미 모델(이하 타쿠미 모델이라고 한다)을 발매했다(그림 1). 타쿠미 모델에서는 최대 허용 길이 측정 오차 : E0, MPE=(0.23+0.7L/1000)μm를 실현, 1m의 측정 오차가 0.93μm 이하가 되어 드디어 측정 정도가 서브 마이크로미터대에 돌입했다. 이 글에서는 타쿠미 모델 상품화까지의 경위와 타쿠미 모델의 특징에 대해서 설명한다. 또한 타쿠미 모델을 설명하는 데 있어, 미쓰도요의 기능 전승에 대한 대응도 빼놓을 수 없기 때문에 이에 대해서도 소개한다. 미쓰도요란 미쓰도요는 ‘정밀 측정으로 사회에 공헌한다’를 경영 이념으로 삼고 있으며, ‘측정’을 통해 제조에 종사하는 사용자의 지속적 발전과 가치 창조에 공헌하는 것을 염두에 두고 1934년에 창업했다. 아날로그식 마이크로미터 생산을 시작으로, 현재는 5,500종류 이상의 정밀 측정기기를 제조/판매하고 있는 세계 유수의 정밀 측정기기 종합 메이커이다. 미쓰도요의 3차원 측정기로 눈을 돌려 보면, 본체, 스케일, 컨트롤러, 프로브, 소프트웨
차세대 메모리 소자인 '강유전체' 내부의 분극 이론이 20년 만에 실험으로 입증됐다. 한국과학기술원(KAIST) 물리학과 양용수 교수 연구팀은 포항공대, 서울대, 한국기초과학지원연구원, 미국 로런스 버클리 국립연구소·아칸소대 연구팀과의 국제협력 연구를 통해 강유전체 내부의 3차원 소용돌이 형태 분극 분포를 실험적으로 처음 증명했다고 30일 밝혔다. 강유전체는 스스로 자화 상태를 유지할 수 있는 강자성체처럼 외부 전기장 없이도 분극 상태를 유지할 수 있는 물질이다. 강자성체를 nm(나노미터·1nm = 10억분의 1m) 크기로 작게 만들면 자석의 성질을 잃어버리게 되는데, 나노 강유전체가 어떤 성질을 갖게 되는지는 알려지지 않았다. 로랑 벨라이쉬 아칸소대 교수팀은 20년 전 아주 작은 나노 크기의 0차원 강유전체 내부에 특이한 형태의 분극 분포가 발생할 수 있음을 이론적으로 제시했다. 차세대 메모리 소자로 응용하기 위해서는 이런 분극 분포를 제어하는 기술이 핵심인데, 분극 측정이 어려운 탓에 실험적으로 규명되지 못했다. 연구팀은 전자현미경으로 다양한 각도의 투과전자현미경 이미지를 획득한 뒤 재구성 알고리즘을 통해 3차원으로 재구성, 원자 분해능 전자토모그래피 기
전기차 등에 쓰이는 리튬이온전지가 급속충전 조건에서도 안정성을 확보할 수 있게 해주는 기술이 개발됐다. 한국전기연구원(KERI, 이하 전기연) 전기소재공정연구센터 최정희 박사팀은 한양대 이종원 교수팀, 경희대 박민식 교수팀과 함께 ‘산화알루미늄 코팅 기반 음극 표면처리 기술’ 개발에 성공했다고 27일 밝혔다. 전기차 보급 확대를 위해서는 주행거리 상승, 안전성 확보, 사용자 편의를 위한 빠른 충전 속도 등이 뒷받침돼야 한다. 이를 실현하기 위한 고에너지밀도의 리튬이온전지를 설계하기 위해서는 전극 두께가 두꺼워야 하는데, 이 경우 지속적인 급속충전 시 열화(deterioration·성능 등이 떨어지는 것) 등 전지 성능이 떨어지는 문제가 발생한다. 연구팀은 리튬이온전지 음극 극판 표면에 1㎛(마이크로미터) 이하의 아주 작은 산화알루미늄 입자를 부분 코팅함으로써 기술 개발에 성공했다. 산화알루미늄은 가격이 저렴하고 전기 절연성이 우수하다. 또 내열성, 화학적 안정성, 기계적 특성 등을 갖춰 각종 세라믹 분야에서 널리 쓰인다. 연구팀은 산화알루미늄 입자가 리튬이온전지 음극과 전해질 간 계면(interface·2개 상(相) 사이 경계면)을 효과적으로 제어하고, 리튬
무선 기능 필요한 의료·건강관리 웨어러블 기기 등에 적용 기대 높아 국내 연구팀이 세계 최초로 마음대로 늘리거나 줄여도 무선통신 성능을 유지하는 ‘전자피부’ 개발에 성공했다. 과학기술정보통신부는 한양대학교 정예환 교수와 유형석 교수 공동연구팀이 세계 최초로 고무처럼 형태를 변형해도 무선통신 성능을 유지하는 전자피부 개발에 성공했다고 23일 밝혔다. 특히 전자피부 기술을 기반으로 한 웨어러블 기기는 의료와 건강관리 등 다양한 분야에서 활발히 적용할 수 있어 가치가 높다. 한편 이번 연구 성과는 과기정통부 기초연구사업(우수신진연구) 등의 지원으로 수행한 것으로, 국제학술지 ‘네이처’에 23일(현지시간 22일 16시) 게재됐다. 웨어러블 기기가 제대로 동작하려면 신축성을 갖는 무선 주파수(RF: Radio Frequency) 소자와 회로가 필수적이다. 하지만 무선주파수(RF) 회로는 고주파에서 동작하는 특성상 아주 조금만 늘어나거나 구부러지기만 해도 회로의 작동 주파수 대역이 변화해 통신이 끊기거나 전력 송·수신 효율이 급격하게 낮아지는 한계가 있다. 때문에 피부 표면과 같이 물리적으로 변화하는 환경에서 제 기능을 수행하려면 신축성을 가지면서 어떠한 조건에서도 무
국내 연구진이 세계 최대 규모의 암조직 데이터베이스를 구축하는 데 성공했다. 한국과학기술원(KAIST)은 의과학대학원 박종은 교수·바이오뇌공학과 최정균 교수와 삼성서울병원 이세훈 교수 연구팀이 1500명의 암·정상조직 샘플과 30종의 암종을 아우르는 최대 규모의 단일세포와 공간전사체 데이터베이스를 구축했다고 22일 밝혔다. 이를 바탕으로 면역치료(우리 몸속 면역세포를 이용한 암 치료)의 예후를 예측하는 데 중요한 특정 형태의 세포상(세포의 형태)을 보고했다. 공간전사체는 전사체(유전체에서 전사되는 RNA 총체)의 위치 정보를 말한다. 전사체의 공간 정보를 통해 단일세포의 위치를 파악함으로써 세포들의 3차원 배열을 정량적으로 측정할 수 있다. 연구팀은 1000개의 암 환자 조직샘플과 500여명의 정상 조직 샘플에 대한 단일세포 전사체 데이터를 30종의 암종에 대해 수집, 대부분 암에 대한 세포 지도가 총망라된 '전 암종 단일세포 지도'(pan-cancer single-cell atlas)를 구축했다. 내과 전문의가 포함된 연구진이 암 조직을 구성하는 100여개의 세포 상태를 규정, 이들의 발생빈도를 바탕으로 암종별 조직의 상태를 분류했다. 또 미국 암 환자 공
국내 연구진이 청색 유기발광다이오드(OLED) 발광층의 핵심 성질을 예측하는 인공지능(AI) 모델을 개발했다. 김재민 중앙대 첨단소재공학과 교수 연구진은 이준엽 성균관대 화학공학부 연구진과 공동연구를 통해 청색 OLED의 삼중항 발광 비율을 99% 이상의 정확도로 예측하는 AI 모델을 개발했다고 중앙대가 16일 밝혔다. 청색 OLED는 적색·녹색 OLED에 비해 발광 에너지가 큰 대신 수명이 짧다. 이 때문에 전자를 빛으로 전환하는 효율이 낮은 대신 수명이 긴 '삼중항 융합 형광' 발광체를 활용한다. 연구진이 개발한 AI 모델은 이 삼중항 융합 속도를 99.2%, 삼중항 발광 비율을 99.9% 정확도로 예측해냈다. 이번에 개발된 AI 모델을 활용하면 청색 OLED 발광체 데이터베이스를 구축하는 과정이 단순해지고 OLED 소재·소자 개발이 빨라질 것이라고 중앙대는 전망했다. 이번 연구 결과에 대한 논문은 국제학술지 '어드밴스드 머티리얼스'(Advanced Materials)에 게재됐다. 헬로티 김진희 기자 |